GrowingIO 2017年 第3本电子书 《产品经理数据分析手册》 正式上线啦 点击【阅读原文】立即下载 升级你的数据分析技能! 本文选自 GrowingIO 《 产品经理数据分析手册》 ,根据张溪梦演讲内容整理编辑;原文发于GrowingIO 博客 和公众号,授权大数据文摘发布 / 转载 。 本文作者:张溪梦, GrowingIO 创始人 & CEO,原 LinkedIn 商务分析高级总监。张溪梦先后服务过EPSON、eBay、LinkedIn 等硅谷明星企业,有着 14 年的数据分析、用户增长经
数据分析(DataAnalysis)——这个词真的是如雷贯耳,装B一绝啊!甭管什么玩意,上来先整一通再说。“数据分析”甚是被提上了神坛,找工作或者聊点行业内的动态不提点数据简直是没法混了。坦白讲,我对“数据分析”的概念知之甚少,仅有的那点理解:统计数据,分析数据,大数据(BigData)。 正文 如何对产品进行数据分析呢?或者说对我这样的一个数据分析小白来讲,该从何入手数据分析呢?思维方式决定行动结果。 第一要点:什么是数据分析? 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形
数据分析( Data Analysis )——这个词真的是如雷贯耳,装B一绝啊!甭管什么玩意,上来先整一通再说。“数据分析”甚是被提上了神坛,找工作或者聊点行业内的动态不提点数据简直是没法混了。坦白讲
很多人会问数据分析目的是什么?它有什么作用?让我们看看亿信华辰如何看待数据分析的目的和意义。仅仅谈论数据分析的作用实际上并不重要,因此在谈论该作用之前,我们首先要考虑受众,打个比方:对于个人而言,由于身体感应设备的原因,让我们每天锻炼身体健身各种指标可以数字化,最终完成对个人身体和生活习惯的自我量化,然后完善对个人日常生活规律的调节,使我们过上更好的生活。
书不在多,而在于精。下面从数据分析招聘要求的必须技能:统计学,Excel,SQL,业务知识,Python这5个部分来详细聊聊每一步如何去学习和看哪些书
1. 懂业务 从事数据分析工作的前提就是需要懂业务,即熟悉行业、公司业务及流程,甚至有自己独到见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的实用价值。 例如公司2011年的运营收入是1000万元,那么不熟业务的数据分析师看到的只是1000万这个数字,而熟悉业务的数据分析师,则看到的不仅是1000万这个数字,他还看到数字背后隐藏的信息,如1000万元是有哪几个业务收入构成,哪个业务收入占主要部分,哪个业务收入是最小占比,最高业务收入的地区又是哪个地区等信息。 这就是懂业务与不懂业
作者 CDA 数据分析师 『写在前面』 “每个人都需要具备数据分析能力”当被问及对数据分析的理解时,王武佳老师这样说到。 『人物介绍』 云幕后创始人 王武佳 2005年毕业于上海财经大学统计学,从事
什么是数据分析? 数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。在实际应用中,数据分析可帮助人们作出判断,以便采取适当行动。当然,在我看来数据本身并没有任何价值,正是由于分析方法的存在使得原本毫无价值的数据大放异彩。 为什么要数据分析? 有人说,老板要看数据;也有人说,VC投资需要;也有人说,公司运营需要... 产生数据需求的原因有很多,我想现实中大多数人做数据还是为了获得产品的客观现状并有所为的。(我能这样想,大概是因为我是个乐观
最近在部门室内的交流会上,分享了一些撰写数据分析文章的心得,索性今天把这些心得体会以文字的形式记录下来,一方面当成是对数据分析工作的分享,另一方面作为个人成长记录,可能未来回头再看此文会觉得幼稚、粗浅。
与其他一些相关工程职位一样,数据科学家的影响力与互联网同进同退。数据工程师和数据分析师与数据科学家携手共同完成这幅“大数据时代”巨作。他们共同努力拟定数据平台要求,基础和高级算法,提供数据分析和展示所需的可视化工具,并将价值创造以易于理解,富于见解的方式反馈给其他部门。 三者之间的定义又是如何界定的呢? 数据科学家是什么样一个存在呢? 通常情况下,数据科学家有数学或物理方面的高等学位。有博士学位的情况并不少见,硕士学位仅是一个前提条件。数据科学家精通统计建模以及如何构建与定制高级数学算法。这既在他们专业范围
如今是一个数据说话的时代,同时也是一个数据竞争的时代,一切都是靠数据说话,而也正是因为这样方方面面的原因,让数据分析师这个职业水涨船高,市场需求很大。那么,我们需要先了解一下什么是数据分析师。
没有哪个统计值比P值更富于争议了,数百篇博客和论文围绕许多统计学家嗤笑的“零假设显著性检验”展开。(null hypothesis significance testing:零假设显著性检验,NHST
这两年的大数据热潮带火了数据分析这个职业,很多人想转行干数据分析,但是又不知道现在这个行业的求职环境和前景如何,动了心却不敢贸然行动。
数据挖掘是指有组织有目的地收集数据、分析数据,并从这些大量数据提取出需要的有用信息,从而寻找出数据中存在的规律、规则、知识以及模式、关联、变化、异常和有意义的结构。
想要培养数据分析的能力,我认为可以从两部分来着手:一是数据分析方法论的建立,二是数据分析从入门到精通的知识学习。 那么该如何搭建自己的数据分析知识体系?数据分析的价值又在哪里?做数据分析有哪些具体的方法?又如何学习数据分析? 我把我之前的两篇文章整理下,和大家分享一下这些问题。 Part 1 | 数据分析方法论 & 知识体系 1. 数据分析体系:道、术、器 「道」是指价值观。要想做好数据分析,首先就要认同数据的意义和价值。一个不认同数据分析、对数据分析的意义缺乏理解的人是很难做好这个工作的。 「术」
近期在整理一些散落在各处的老文章发出来。懂数据系列内容是很早之前给公司非数据专业人员做的系列分享培训,共计四期内容,后面三期内容偏excel的实操展示和案例分析,不便于分享,只把第一讲的内容分享出来。
在大数据领域里,经常会看到例如数据挖掘、OLAP、数据统计等等的专业词汇。如果仅仅从字面上,我们很难说清楚每个词汇的意义和区别。今天,我们就来通过一些大数据在高校应用的例子,来为大家说明白—数据挖掘、
数据分析在保险行业的运用 由于客户的价值我们可能直接无法得到,这可能需要通过客户的属性信息或行为信息来判断。所以通过客户数据来判断客户价值,进行客户价值管理是未来的趋势,而数据分析就是这一方法的重要技术手段。现在数据分析可以说在商业中的应用越来越广泛,尤其是在互联网、通讯、金融、零售业中的应用,自上世纪数据分析技术在美国应用以来,现在已推广到全世界更多的行业之中。上世纪90年代末数据分析这一概念随着沃尔玛啤酒与尿布的典型案例来到中国来。那么数据分析技术在国内应用如何呢?在保险行业的应用又会如何呢? 一、数据
明确数据分析目的以及确定分析思路,是确保数据分析过程有效进行的先决条件,它可以为数据的收集、处理及分析提供清晰的指引方向。
数据分析的步骤你都了解吗? 随着大数据的发展,很多人转行到大数据的行业,大数据分析师这个岗位,那么数据分析具体有哪些阶段?一起来了解一下 数据分析5个阶段 01 数据收集 第一手数据:主要指可直接获
“互联网教父”凯文·凯利曾经指出边缘式创新具备颠覆式力量,这个理论适用于经营管理,但对于个人职业发展也同样适用,大数据时代催生出了数据分析师这个新兴职业,对于很多人来讲,选择一个快速成长的新行业,才会
Froc寄语:数据分析师(或者时髦一些的说法是数据科学家),是公司不可或缺的重要组成人员,一家缺失数据分析师的公司,至少说明这家公司缺少数据驱动的意识,在未来竞争中,一定处于被动。一直以来,我致力于推进数据化运营,而数据化运营需要解决几个核心问题:
导读:大数据时代的到来,对产品经理提出了更加严格的数据分析要求。一个懂数据分析的产品经理可以利用数据驱动产品设计优化,并提升客户体验。那么,产品经理到底该关注哪些数据呢?小产品如何运用A/B测试?产品经理该如何学习数据分析呢? 本文根据GrowingIO创始人&CEO张溪梦与产品经理在线交流问题整理编辑,希望对产品经理提升数据分析能力有较好的帮助。 如何获取数据,获取什么样的数据? Q1:一个电商平台,应该着重关注什么数据,怎样设计数据后台? A1:电商数据的核心指标一般有:GMV,Transations(
数据分析报告实质上是一种沟通与交流的形式,说简单点就是将分析结果、可行性建议以及其他价值的信息传递给管理人员。需要数据分析师对杂乱无章的数据进行包装,让阅读者能对结果做出正确的理解与判断,并可以根据其做出有针对性、操作性、战略性的决策。
聚信立数据科学家甘建铃:孙子兵法在数据分析中的应用
领导说:“你去建材市场帮我买些配件。”你顶着烈日跑遍大小市场,但领导问你:“为何选这家?”你却答不上来。
这样理解,就简单多啦! 导读:在大数据领域里,经常会看到例如数据挖掘、OLAP、数据统计等等的专业词汇。如果仅仅从字面上,我们很难说清楚每个词汇的意义和区别。今天,我们就来通过一些大数据在高校应用的例
要做一名优秀数据分析师,首先对数据分析岗位有基本的概念,其次,要明白数据分析中有哪些套路和方法,如此,才能举一反三,才能不同场景数据分析切换自如。下面我们高屋建瓴,抽茧剥丝般讲讲数据分析四大要素。
如果你打开招聘的职位要求,都会要求具有统计学的知识,这是因为统计学是数据分析、机器学习的基础知识,是必须要学习的。
这两年,随着大数据、精益化运营、增长黑客等概念的传播,数据分析的思维越来越深入人心。处于互联网最前沿的产品经理们接触了大量的用户数据,但是却一直困扰于如何做好数据分析工作。 那么产品经理该如何搭建自己的数据分析知识体系?数据分析的价值又在哪里?产品经理做数据分析有哪些具体的方法?又如何学习数据分析?本文将和大家分享一下这些问题。 数据分析体系:道、术、器 “道”是指价值观。产品经理要想是做好数据分析,首先就要认同数据的意义和价值。一个不认同数据分析、对数据分析的意义缺乏理解的人是很难做好这个工作的。 “术
曾经有人问过我,什么是数据分析思维?如果分析思维是一种结构化的体现,那么数据分析思维在它的基础上再加一个准则:
SPSS软件是一种常用的统计分析工具,被广泛应用于社会科学、医学研究等领域。本文将对SPSS软件的主要功能进行详细分析,并结合一个实际案例进行具体使用方法的说明。
现在确实是属于数据分析师的天下了,如果你有能力,有经验,充满好奇心以及永不倦怠的热情,作为数据分析师的你可谓前景广阔,有一大批公司乖乖站在你家门前挂着牌子等着你的挑选。但是在评估到底去哪家公司的平台上施展你的才华的时候,却是有着很多考量的。即便是一个从业多年的老手也不可能在各种大小规模不一,发展阶段不同,拥有各自的企业文化的公司待过。他们也不可能横跨多个领域,掌握多种技术。本文着重给所有有志于从事数据分析师这个职业的年轻人一些经验。大体上总结一下就三点内容,凭借这三点内容,你可以非常理性、客观地分析出来眼
当你交给公司领导一份数据分析报告时,领导会问你的数据分析方法论是什么,如果你的方法论不正确或不合理,那么你的分析报告将没有价值可言,那么事实情况是不是这样呢?我们得从数据分析方法论的概念说起。
一个得心应手的数据分析工具,是每一位从业人员做数据分析的利器。面对浩如烟海的数据,如何选择合适的数据分析工具,成为运营、产品、市场等职能部门人员的一个难题,运用用数据分析工具,企业可以整合多种渠道的数据,快速完成和完善数据分析。那么如何选择数据分析工具呢?笔者总结了以下五点供大家参考。
一个数据分析流程,应该包括以下几个方面,建议收藏此图仔细阅读。完整的数据分析流程:
数据分析师这个职业现在越来越火爆。本文面向那些准备投身于这个行当的年轻人,在选择怎样的公司上给出了三条参考标准。它们分别是: 去供职于那些利用数据分析来做市场战略定位的公司; 去为一个拥有着伟大想法的公司工作; 去选择给一家即将进入空白市场的公司。 现在确实是属于数据分析师的天下了。如果你有能力,有经验,充满好奇心以及永不倦怠的热情,作为数据分析师的你可谓前景广阔,有一大批公司乖乖站在你家门前挂着牌子等着你的挑选。但是在评估到底去哪家公司的平台上施展你的才华的时候,却是有着很多考量的。即便是一个从
1、数据跟踪员:机械拷贝看到的数据,很少处理数据 虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。 2、数据查询员/处理员:数据处理没问题,缺乏数据解读能力 这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,
数据跟踪员:机械拷贝看到的数据,很少处理数据 虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。 2数据查询员/处理员:数据处理没问题,缺乏数据解读能力 这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并且可
1数据跟踪员:机械拷贝看到的数据,很少处理数据 虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。 2数据查询员/处理员:数据处理没问题,缺乏数据解读能力 这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并且
1数据跟踪员:机械拷贝看到的数据,很少处理数据 虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。 2数据查询员/处理员:数据处理没问题,缺乏数据解读能力 这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并
对于数据分析工作而言,如果没有目标,不仅工作结果可能没有意义,甚至有可能让人误入歧途。比如说,有的数据分析师,每天重复着制作报表的工作,没有对数据进行思考和分析,不知道数据分析的目标是什么,逐渐沦为「报表制作的机器」,让自己的职业前途堪忧。
编译|花满楼 转自|TECH2IPO/创见 源自|stitchfix 数据分析师这个职业现在越来越火爆。本文面向那些准备投身于这个行当的年轻人,在选择怎样的公司上给出了三条参考标准。 现在确实是属于
入行数据分析师,从来都不是一蹴而就的。好比钓鱼,不是简单地把诱饵放上鱼钩,然后扔到水中,就可以有鱼上钓,方法、技术与工具,缺一不可。什么是举一反三,什么是学以致用,什么是融会贯通,不是靠一味地执著和花时间就可以达到的,只有由始至终,你都基于最坚实的理论与基础,系统学习技术与实操,熟练掌握各种必要工具,摸索出高效率的学习方法,你才有可能进阶成为优秀的数据分析师。别说你很努力了,现在这个世道谁不努力?关键是看你如何努力,努力在哪些地方!
1、数据跟踪员:机械拷贝看到的数据,很少处理数据 虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。 2、数据查询员/处理员:数据处理没问题,缺乏数据解读能力 这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义
场景一:年中,用仪表盘、表格等图表元素给同事做了一份数据报告,将这份报告提供给相关干系人看时,发现存在一些问题:
领取专属 10元无门槛券
手把手带您无忧上云