首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据仓库①:数据仓库概述

一个公司往往会使用并维护若干个数据库,这些数据库保存着公司的日常操作数据,比如商品购买、酒店预订、学生成绩录入等; 2. 分析型数据库 主要用于历史数据分析。...~这就是关于数据仓库最贴切的定义了。事实上数据仓库不应让传统关系数据库来实现,因为关系数据库最少也要求满足第1范式,而数据仓库里的关系表可以不满足第1范式。...有了这些数据快照以后,用户便可将其汇总,生成各历史阶段的数据分析报告; 数据仓库组件 数据仓库的核心组件有四个:各源数据库,ETL,数据仓库,前端应用。如下图所示: ? 1....前端应用 和操作型数据库一样,数据仓库通常提供具有直接访问数据仓库功能的前端应用,这些应用也被称为BI(商务智能)应用; 数据集市(data mart) 数据集市可以理解为是一种"小型数据仓库",它只包含单个主题...数据仓库开发流程 在数据库系列的第五篇 中,曾详细分析了数据库系统的开发流程。数据仓库的开发流程和数据库的比较相似,因此本文仅就其中区别进行分析。 下图为数据仓库的开发流程: ?

2.9K71
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    网站维护–网站安全维护方案

    而随着网络技术的不断发展与日新月异的信息更新速度,网站维护也越来越重要。本文将从以下几个方面,提出一些网站维护的方案,以期对网站的管理者和维护者提供指导和参考。...二、网站维护的重要性 首先,网站维护是为了给访问者提供更好的用户体验,这对于提高访问量和用户满意度非常重要。...其次,网站维护还可以确保网站的安全性,这是非常重要的。随着网络黑客的数量不断增加,网站袭击和数据泄露已成为常态。许多网站因为安全性不够而遭受了损失,因此进行网站维护是确保网站不被攻击的重要措施。...三、网站维护的流程 网站维护的流程包括以下几个环节: 收集用户反馈 管理员需要定期收集用户的反馈,了解用户对网站的评价,从而针对问题进行相应的调整。...通过定期检查和较好的网站维护方案,管理员可以有效的管理和维护网站,给用户提供更好的体验,增强网站的品牌价值。

    2.2K30

    数据仓库】现代数据仓库坏了吗?

    数据仓库是现代数据堆栈的基础,所以当我们看到 Convoy 数据负责人 Chad Sanderson 在 LinkedIn 上宣称“数据仓库坏了”时,它引起了我们的注意。...不可变数据仓库如何结合规模和可用性 乍得桑德森的观点 现代数据堆栈有许多排列,但数据仓库是一个基础组件。...另一种方法:引入不可变数据仓库 不可变数据仓库概念(也称为活动 ETL)认为,仓库应该是通过数据来表示现实世界,而不是乱七八糟的随机查询、损坏的管道和重复信息。...最后,不可变数据仓库不适用于 PB 测量竞赛和大数据统计。弃用和维护与配置一样重要。 这种方法利用技术的优势来实现两全其美。传统方法的治理和业务驱动方法,具有与现代数据堆栈相关的速度和可扩展性。...不可变数据仓库也面临挑战。以下是一些可能的解决方案。 我并不认为不可变数据仓库是灵丹妙药。与任何方法一样,它也有其优点和缺点,而且肯定不是每个组织都适用。

    1.7K20

    数据仓库②-数据仓库与数据集市建模

    本文将详细介绍数据仓库维度建模技术,并重点讨论三种基于ER建模/关系建模/维度建模的数据仓库总体建模体系:规范化数据仓库,维度建模数据仓库,以及独立数据集市。...数据仓库建模体系之规范化数据仓库 所谓"数据仓库建模体系",指的是数据仓库从无到有的一整套建模方法。最常见的三种数据仓库建模体系分别为:规范化数据仓库,维度建模数据仓库,独立数据集市。...很多书将它们称为"数据仓库建模方法",但笔者认为数据仓库建模体系更能准确表达意思,请允许我自作主张一次吧:)。下面首先来介绍规范化数据仓库。...数据仓库建模体系之维度建模数据仓库 非维度建模数据仓库(dimensionally modeled data warehouse)是一种使用交错维度进行建模的数据仓库,其总体架构如下图所示: ?...数据仓库建模体系之独立数据集市 独立数据集市的建模体系是让公司的各个组织自己创建并完成ETL,自己维护自己的数据集市。其总体架构如下图所示: ?

    5.3K72

    数据仓库

    *了解数据仓库相关技术 *了解数据仓库设计过程建造,运行及维护 *了解OLAP及多维数据模型 决策支持系统及其演化 一般将数据分为:分析型数据与操作型数据 操作型数据:由企业的基本业务系统产生的数据...数据仓库的特性:面向主题性,集成性,不可更新和时间性。 集成:数据仓库最重要的特性,分为数据抽取转换,清理(过滤)和装载 不可更新:数据仓库中的数据以批量方式处理,不进行一般主义上的数据更新。...数据仓库的体系结构与环境 从数据层次角度的体系结构来看,典型的数据仓库的数据体系结构包括:操作型数据、操作型 数据存储、数据仓库、数据集市和个体层数据 从功能结构看,可分为数据处理、数据管理和数据应用三个层次...数据仓库的数据组织 数据仓库的数据单位中保存数据的细化程度或综合程度的级别。...数据仓库维护的基本思路: 根据某种维护策略,在一定条件下触发维护操作;维护操作捕捉到数据源中的数据变化; 通过一定策略对数据仓库中的数据进行相应的更新操作,以保持两者的一致性。

    1.8K40

    数据仓库入门

    什么是数据仓库(Data Warehouse,DW)?...1991 年,数据仓库之父 Bill Inmon 在《Building the Data Warehouse》一书中,给出的定义: “数据仓库一个面向主题的、集成的、稳定的、随时间变化的数据的集合,以用于支持管理决策过程...建立数据仓库的目的是帮助企业高层系统地组织、理解和使用数据,以便进行战略决策。 数据仓库系统的体系结构 源数据层 源数据是数据仓库系统的基础,是整个系统的数据源泉。...数据存储与管理层 元数据 元数据是关于数据的数据,位于数据仓库的上层,用以描述数据仓库内数据的结构、位置和 建立方法。通过元数据进行数据仓库的管理和使用。...数据仓库 数据仓库中存放了企业的整体信息,而数据集市只存放了某个主题需要的的信息,其目的是 减少数据处理量。

    1.9K20

    数据仓库架构

    雪花型对维度正规化是一种比较复杂的过程,相应的数据库结构设计、数据的 ETL、以及后期的维护都要复杂一些。...源事务:业务库或者日志等各个方面的数据源,一般不维护历史信息。 ETL:目的是构建和加载数据到展现区的目标维度模型中,划分维度和事实。...一致性维度 在多维体系结构中,没有物理上的数据仓库,由物理上的数据集市组合成逻辑上的数据仓库。而且数据集市的建立是可以逐步完成的,最终组合在一起,成为一个数据仓库。...在多维体系结构的数据仓库项目组内需要有专门的维度设计师,他的职责就是建立维度和维护维度的一致性。在后台建立好的维度同步复制到各个数据集市。这样所有数据集市的这部分维度都是完全相同的。...一致性事实和一致性维度有些不同,一致性维度是由专人维护在后台(Back Room),发生修改时同步复制到每个数据集市,而事实表一般不会在多个数据集市间复制。

    2K20

    维度模型数据仓库(三) —— 准备数据仓库模拟环境

    (二)准备数据仓库模拟环境         上一篇说了很多数据仓库和维度模型的理论,从本篇开始落地实操,用一个小而完整的示例说明维度模型及其相关的ETL技术。...本篇详细说明数据仓库模拟实验环境搭建过程。        ...建立源数据数据库和数据仓库数据库         3. 建立源库表         4. 建立数据仓库表         5. 建立过渡表         6....关于日期维度数据装载         日期维度在数据仓库中是一个特殊角色。日期维度包含时间,而时间是最重要的,因为数据仓库的主要功能之一就是存储历史数据,所以每个数据仓库里的数据都有一个时间特征。...使用这个方法,在数据仓库生命周期中,只需要预装载日期维度一次。也可以按需添加数据。

    1K20

    软考高级架构师:AI 通俗讲解软件维护的类型:正确性维护、适应性维护、完善性维护、预防性维护

    软件维护是指在软件交付使用后进行的一系列活动,其目的是修复错误、提升性能或更新软件以适应变化的需求。通常,软件维护可以分为四种类型:正确性维护、适应性维护、完善性维护和预防性维护。...下面我将用简单的例子和通俗的语言来解释这四种类型: 正确性维护(Corrective Maintenance) 正确性维护可以比作是对车辆发生的小故障进行修理。...适应性维护(Adaptive Maintenance) 适应性维护类似于你需要修改汽车的一部分,使其能在新的环境下运行(比如为了在雪地中驾驶而更换雪地轮胎)。...预防性维护(Preventive Maintenance) 预防性维护就像是定期对汽车进行保养,以防未来发生故障。...每种维护类型都是软件长期健康运行的关键组成部分,理解并妥善执行这些维护活动能显著提高软件的稳定性和用户满意度。

    24000

    数据仓库技术」怎么选择现代数据仓库

    通常,他们需要几乎实时的数据,价格低廉,不需要维护数据仓库基础设施。在这种情况下,我们建议他们使用现代的数据仓库,如Redshift, BigQuery,或Snowflake。...在这里,他们是: 数据量 专门负责人力资源的支持和维护 可伸缩性:水平与垂直 定价模型 数据量 您需要知道将要处理的数据量的估计。...本地和云 要评估的另一个重要方面是,是否有专门用于数据库维护、支持和修复的资源(如果有的话)。这一方面在比较中起着重要的作用。...如果您有专门的资源用于支持和维护,那么在选择数据库时您就有了更多的选择。 您可以选择基于Hadoop或Greenplum之类的东西创建自己的大数据仓库选项。...这些系统确实需要大量的安装、维护工程资源和熟练的人员。 但是,如果您没有任何用于维护的专用资源,那么您的选择就会受到一些限制。

    5K31

    数据仓库建模

    一、数据仓库建模的意义 如果把数据看作图书馆里的书,我们希望看到它们在书架上分门别类地放置;如果把数据看作城市的建筑,我们希望城市规划布局合理;如果把数据看作电脑文件和文件夹,我们希望按照自己的习惯有很好的文件夹组织方式...下图是个示例,通过统一数据模型,屏蔽数据源变化对业务的影响,保证业务的稳定,表述了数据仓库模型的一种价值: 二、数据仓库分层的设计 为了实现以上的目的,数据仓库一般要进行分层的设计,其能带来五大好处:...三、两种经典的数据仓库建模方法 前面的分层设计中你会发现有两种设计方法,关系建模和维度建模,下面分别简单介绍其特点和适用场景。...1、维度建模 (1)定义 维度模型是数据仓库领域另一位大师Ralph Kimball 所倡导的。...(3)优缺点 优点:技术要求不高,快速上手,敏捷迭代,快速交付;更快速完成分析需求,较好的大规模复杂查询的响应性能 缺点:维度表的冗余会较多,视野狭窄 2、关系建模 (1)定义 是数据仓库之父Inmon

    1.4K31

    Greenplum 实时数据仓库实践(1)——数据仓库简介

    下面简单总结一下使用数据仓库的好处: 将多个数据源集成到单一数据存储,因此可以使用单一数据查询引擎展示数据。 缓解在事务处理数据库上因执行大查询而产生的资源竞争问题。 维护历史数据。...分区最大的作用在于可用性和可维护性,使得数据维护期间保持事务处理的性能。 SQL语句优化。有效利用数据库管理系统的优化器,使用最佳的数据访问路径。 避免过度使用索引。...在数据仓库环境中,一般不使用数据库来保证数据的参考完整性,即不使用数据库的外键约束,它应该由ETL工具或程序来维护。...Lambda架构的缺点如下: 使用两套大数据处理引擎:维护两个复杂的分布式系统,成本非常高。...导致Lambda 架构的缺点根本原因是要同时维护两套系统:批处理层和速度层。

    1.8K51

    数据仓库指北

    数据仓库的基础必备问题 2. 数据仓库的几种数据表 3. 数据仓库分层设计及各层作用 4. 数据仓库几种数据模型 5. 维度建模 一、 灵魂十二问 Q1:大数据的数据来源?...数据集市可以理解为是一个微型的数据仓库,具有更少的主题域,服务对象更小,可以是部门级别,而数据仓库则是服务于企业级别。数据仓库可以统一规划数据,避免数据孤岛。 Q3:为什么做数据分层设计?...使用代理键的缺点:是使用代理键会增加ETL的复杂性,开发和维护成本高。...三、数据仓库的一些数据表种类 1....数据仓库大多是这类模型,即数据集市建模采用星型模型,然后各数据集市组成一个完整的数据仓库则演变成星座模型。

    1.3K20
    领券