摄像头是一种视觉传感器,它已经成为了机器人技术、监控、空间探索、社交媒体、工业自动化,甚至娱乐业等多个领域不可分割的组成部分。
前言:最近项目上研究鱼眼摄像头的画面畸变问题,对比了基于Matlab和Python Opencv的方法,分别进行了摄像头的标定和图像矫正,实际结果个人认为Opencv的效果为佳,本文分享一下基于Matlab的鱼眼摄像头标定和图像畸变矫正。
文章:A Graph-based Optimization Framework for Hand-Eye Calibration for Multi-Camera Setups
本文是来自黄浴博士的知乎专栏,主要概述自动驾驶系统中的传感器的标定的方法。讨论不同传感器之间的外参标定,特别是激光雷达和摄像头之间的标定。本文已获得黄浴博士授权,未经原作者许可不得转载。该文章知乎地址为https://zhuanlan.zhihu.com/p/57028341。在此群主总结整理分享给大家。同时希望大家能够积极留言参与分享。
当今,由于数字图像处理和计算机视觉技术的迅速发展,越来越多的研究者采用摄像机作为全自主用移动机器人的感知传感器。这主要是因为原来的超声或红外传感器感知信息量有限,鲁棒性差,而视觉系统则可以弥补这些缺点。而现实世界是三维的,而投射于摄像镜头(CCD/CMOS)上的图像则是二维的,视觉处理的最终目的就是要从感知到的二维图像中提取有关的三维世界信息。
Pinhole camera calibration calls camera vision from 3D objects in the real world and transforms them into a 2D image.
尝试用OpenCV来实现立体视觉也有一段时间了,主要的参考资料就是Learning OpenCV十一、十二章和OpenCV论坛上一些前辈的讨论。过程中磕磕碰碰,走了不少弯路,终于在前不久解决了最头大的问题,把整个标定、校准、匹配的流程调试成功。(虽然还有一些问题至今尚未搞清) 在这里写这篇文章,第一方面是给自己一个总结,第二方面是感觉OpenCV立体视觉方面的资料还是相当零散和不完整,新手入门需要花很长时间才能摸索出来,第三方面,也是自己在过程中有些问题仍旧迷迷糊糊,希望可以抛砖引玉。 1. 摄像头 我用的
文章:MC-NeRF: Muti-Camera Neural Radiance Fields for Muti-Camera Image Acquisition Systems
我们不考虑镜头的畸变,将相机的成像模型简化为小孔成像模型,则特征点的图像坐标Pf 与其在摄像机坐标系下的三维坐标P 之间的关系可表示为:
需要调用到opencv的什么功能,就在代码头提前引用好对应的头文件。 所有的头文件都可以在include/opencv2/文件夹找到。
针对采棉机械手棉花识别定位难的问题,提出一种基于机器视觉的棉花识别与定位方法,搭建出双目立体视觉系统,在此基础上通过相机标定、图像采集、图像处理、特征提取等过程,计算得出棉株的深度信息以及其成熟棉 花的三维信息,其深度平均误差值为2.55mm,单位坐标误差均值为(2.8mm,-1.4mm,-1.35mm)。结果表明,基 于双目立体视觉对棉株上的成熟棉花进行三维空间上的识别定位是可行的。
单目视觉是Mobileye(ME)的看家法宝,其实当年它也考虑过双目,最终选择放弃。
在计算机视觉中,可以通过双目摄像头实现,常用的有BM 算法和SGBM 算法等,双目测距跟激光不同,双目测距不需要激光光源,是人眼安全的,只需要摄像头,成本非常底,也用于应用到大多数的项目中。本章我们就来介绍如何使用双目摄像头和SGBM 算法实现距离测量。
经过几个月的努力,小白终于完成了市面上第一本OpenCV 4入门书籍《从零学习OpenCV 4》。为了更让小伙伴更早的了解最新版的OpenCV 4,小白与出版社沟通,提前在公众号上连载部分内容,请持续关注小白。
上一篇文章,我们讨论了深度神经网络如何从一张图像中预测深度。特别是,我们证明了这个问题可以自监督只使用视频和几何约束。这种方法高度可扩展,甚至可以工作在未校准的摄像头或自动驾驶常见的多摄像头装备。
转载自知乎https://zhuanlan.zhihu.com/p/55747295
本文首发于知乎,作者为奇点汽车美研中心总裁兼自动驾驶首席科学家黄浴,AI 开发者经授权转载。
OpenCV(开源计算机视觉库)是一个开源的计算机视觉和机器学习软件库,提供了丰富的功能和工具,用于处理图像和视频数据。其主要功能包括但不限于以下几个方面:
在VSLAM中,经常会使用鱼眼镜头或者广角镜头。本文主要分为理论部分与鱼眼镜头标定实践两部分,其中理论部分,主要参考《A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses》,作者为Juho Kannala和Sami S. Brandt,写于2006年,同时这篇文章的作者在2004年也写了一篇与鱼眼镜头标定相关的论文《A Generic Camera Calibration Method for Fish-Eye Lenses》,同样值得参考。
摘要:行人重识别(Person Re-Identification,简称Re-ID),是一种利用计算机视觉技术来检索图像或者视频序列中是否存在特定行人的AI技术,在智慧城市等监控场景中具有重要的应用意义和前景。本文介绍我们最新的IEEE TPAMI综述论文 《Deep Learning for Person Re-identification: A Survey and Outlook》,该文作者来自武汉大学、起源人工智能研究院(IIAI)、北理工、英国萨里大学、Salesforce亚洲研究院。
来自: http://blog.csdn.net/sunanger_wang/article/details/7744015 虽然最近注意力已经不可遏制地被神经科学、大脑记忆机制和各种毕业活动吸引过去了,但是还是觉得有必要把这段时间双目视觉方面的进展总结一下。毕竟从上一篇博文发表之后,很多同仁发E-mail来与我讨论,很多原来的疑团,也在讨论和一步步的试验中逐渐解决了。 开篇之前,首先要感谢maxwellsdemon和wobject,没有和你们的讨论,也就没有此篇的成文。 说到双摄像头测距,首先要复习一下
一句话就是世界坐标到像素坐标的映射,当然这个世界坐标是我们人为去定义的,标定就是已知标定控制点的世界坐标和像素坐标我们去解算这个映射关系,一旦这个关系解算出来了我们就可以由点的像素坐标去反推它的世界坐标,当然有了这个世界坐标,我们就可以进行测量等其他后续操作了~上述标定又被称作隐参数标定,因为它没有单独求出相机的内部参数,如相机焦虑,相机畸变系数等~一般来说如果你仅仅只是利用相机标定来进行一些比较简单的视觉测量的话,那么就没有必要单独标定出相机的内部参数了~至于相机内部参数如何解算,相关论文讲的很多~
化腐朽为神奇!经过ISP图像处理的图片前后对比是如此惊人!从下图中可以观察到,未经处理的原始图像偏绿且暗淡,而经ISP图像处理的图像能够清晰地还原现场真实的颜色细节!
双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。
本文介绍了自识别标记及其在相机标定、机器人导航和增强现实等领域的应用。自识别标记可以自动建立三维空间坐标已知的点与图像上二维投影点之间的对应关系,使得相机标定更加高效和准确。在机器人导航方面,自识别标记可以辅助机器人在复杂环境中进行视觉定位和导航。在增强现实方面,自识别标记图案可以作为识别图布置在自然场景下,实现互动游戏、创意广告等应用。
本文英文名为《Automatic Online Calibration of Cameras and Lasers》
它是一款由Intel公司俄罗斯团队发起并参与和维护的一个计算机视觉处理开源软件库。
激光雷达厂商禾赛科技与百度Apollo在前者位于上海虹桥世界中心的禾赛科技研发中心,共同发布基于Apollo平台的自动驾驶开发者套件——Pandora。 在发布会上,李一帆首先介绍了Pandora的设
文章:CONSTRAINED BUNDLE ADJUSTMENT FOR STRUCTURE FROM MOTION USING UNCALIBRATED MULTI-CAMERA SYSTEMS
本文是《人脸识别完整项目实战》系列博文第3部分:程序设计篇(Python版),第1节《Python实时视频采集程序设计》,本章内容系统介绍:基于Python+opencv如何实现实时视频采集。
书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中使用。
AR/VR的兴起,让我们喜欢上了3D电影和视频,前提是你需要戴上一副3D眼镜才能感受到3D效果。那么,它是如何工作的?当屏幕只是平面时,我们如何体验3D效果?其实,这些是通过一个叫立体相机的玩意儿来捕获的。
https://github.com/bosch-ros-pkg/usb_cam
双目立体视觉,由两个摄像头组成,像人的眼睛能看到三维的物体,获取物体长度、宽度信息,和深度的信息;单目视觉获取二维的物体信息,即长度、宽度。
在计算机视觉项目的开发中,OpenCV作为最大众的开源库,拥有了丰富的常用图像处理函数库,采用C/C++语言编写,可以运行在Linux/Windows/Mac等操作系统上,能够快速的实现一些图像处理和识别的任务。此外,OpenCV还提供了java、python、cuda等的使用接口、机器学习的基础算法调用,从而使得图像处理和图像分析变得更加易于上手,让开发人员更多的精力花在算法的设计上。
文章:ACSC: Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems
文章:Design and Evaluation of a Generic Visual SLAM Framework for Multi-Camera Systems
现在的机器人少不了有各种传感器,传感器之间的标定是机器人感知环境的一个重要前提。所谓标定,是指确定传感器之间的坐标转换关系。由于标定的传感器各异,好像没有特别通用的方法。
文章:Single-Shot is Enough: Panoramic Infrastructure Based Calibration of Multiple Cameras and 3D LiDARs
文章:Online Camera-to-ground Calibration for Autonomous Driving
相机标定:摄像头由于光学透镜的特性使得成像存在着径向畸变,可由三个参数k1,k2,k3确定;由于装配方面的误差,传感器与光学镜头之间并非完全平行,因此成像存在切向畸变,可由两个参数p1,p2确定。单个摄像头的定标主要是计算出摄像头的内参(焦距f和成像原点cx,cy、五个畸变参数(一般只需要计算出k1,k2,p1,p2,对于鱼眼镜头等径向畸变特别大的才需要计算k3))以及外参(标定物的世界坐标)。而双目摄像头定标不仅要得出每个摄像头的内部参数,还需要通过标定来测量两个摄像头之间的相对位置(即右摄像头相对于左摄像头的旋转矩阵R、平移向量t)。
文章:Multi-Camera Visual-Inertial Simultaneous Localization and Mapping for Autonomous Valet Parking
slam (Simultaneous Localization and Mapping)叫即时定位与建图,它主要的作用是让机器人在未知的环境中,完成定位(Localization),建图(Mapping)和路径规划(Navigation)。
在上一章我们介绍了《双目摄像头测量距离》,在这个基础上,我们来了解如何在Android上使用双目测距算法。通过本教程,你不仅掌握如何在Android中使用SBM等双目测距算法,顺便也了解到如何在Android Studio配置OpenCV,通过使用OpenCV可以在Android中实现很多图像处理的功能。
我们来了解如何在Android上使用双目测距算法。通过本教程,你不仅掌握如何在Android中使用SBM等双目测距算法,顺便也了解到如何在Android Studio配置OpenCV,通过使用OpenCV可以在Android中实现很多图像处理的功能。
双目立体成像:zspace的桌面一体机, intel的RealSense主动双目系列,未来立体的桌面一体机。
领取专属 10元无门槛券
手把手带您无忧上云