首页
学习
活动
专区
圈层
工具
发布
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    PySpark SQL——SQL和pd.DataFrame的结合体

    导读 昨日推文PySpark环境搭建和简介,今天开始介绍PySpark中的第一个重要组件SQL/DataFrame,实际上从名字便可看出这是关系型数据库SQL和pandas.DataFrame的结合体,...惯例开局一张图 01 PySpark SQL简介 前文提到,Spark是大数据生态圈中的一个快速分布式计算引擎,支持多种应用场景。...= SparkContext() spark = SparkSession(sc) DataFrame:是PySpark SQL中最为核心的数据结构,实质即为一个二维关系表,定位和功能与pandas.DataFrame...最大的不同在于pd.DataFrame行和列对象均为pd.Series对象,而这里的DataFrame每一行为一个Row对象,每一列为一个Column对象 Row:是DataFrame中每一行的数据抽象...05 总结 本文较为系统全面的介绍了PySpark中的SQL组件以及其核心数据抽象DataFrame,总体而言:该组件是PySpark中的一个重要且常用的子模块,功能丰富,既继承了Spark core中

    12.3K20

    Spark编程实验三:Spark SQL编程

    一、目的与要求 1、通过实验掌握Spark SQL的基本编程方法; 2、熟悉RDD到DataFrame的转化方法; 3、熟悉利用Spark SQL管理来自不同数据源的数据。...age分组; (6)将数据按name升序排列; (7)取出前3行数据; (8)查询所有记录的name列,并为其取别名为username; (9)查询年龄age的平均值; (10)查询年龄age...(2)配置Spark通过JDBC连接数据库MySQL,编程实现利用DataFrame插入如表所示的三行数据到MySQL中,最后打印出age的最大值和age的总和。...(2)配置Spark通过JDBC连接数据库MySQL,编程实现利用DataFrame插入如表所示的三行数据到MySQL中,最后打印出age的最大值和age的总和。...最后,还掌握了RDD到DataFrame的转化方法,并可以利用Spark SQL管理来自不同数据源的数据。

    85010

    PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

    笔者最近需要使用pyspark进行数据整理,于是乎给自己整理一份使用指南。pyspark.dataframe跟pandas的差别还是挺大的。...查询总行数: int_num = df.count() 取别名 df.select(df.age.alias('age_value'),'name') 查询某列为null的行: from pyspark.sql.functions...; Pyspark DataFrame的数据反映比较缓慢,没有Pandas那么及时反映; Pyspark DataFrame的数据框是不可变的,不能任意添加列,只能通过合并进行; pandas比Pyspark...DataFrame有更多方便的操作以及很强大 转化为RDD 与Spark RDD的相互转换: rdd_df = df.rdd df = rdd_df.toDF() ---- -------- 8、SQL...的DataFrame处理方法:增删改差 Spark-SQL之DataFrame操作大全 Complete Guide on DataFrame Operations in PySpark

    32.9K10

    python处理大数据表格

    这里有个巨大的csv类型的文件。在parquet里会被切分成很多的小份,分布于很多节点上。因为这个特性,数据集可以增长到很大。之后用(py)spark处理这种文件。...但你需要记住就地部署软件成本是昂贵的。所以也可以考虑云替代品。比如说云的Databricks。 三、PySpark Pyspark是个Spark的Python接口。这一章教你如何使用Pyspark。...这里的header=True说明需要读取header头,inferScheme=True Header: 如果csv文件有header头 (位于第一行的column名字 ),设置header=true将设置第一行为...点击1个Spark Jobs,可以可视化这个Jobs的DAG。 3.5 通过DataFrame来操作数据 接下来针对df,用我们熟悉的DataFrame继续处理。...show展示top数据 选择部分数据 排序操作 过滤筛选数据 统计数据 原生sql语句支持

    65410

    ​PySpark 读写 Parquet 文件到 DataFrame

    本文中,云朵君将和大家一起学习如何从 PySpark DataFrame 编写 Parquet 文件并将 Parquet 文件读取到 DataFrame 并创建视图/表来执行 SQL 查询。...https://parquet.apache.org/ 优点 在查询列式存储时,它会非常快速地跳过不相关的数据,从而加快查询执行速度。因此,与面向行的数据库相比,聚合查询消耗的时间更少。...Pyspark 将 DataFrame 写入 Parquet 文件格式 现在通过调用DataFrameWriter类的parquet()函数从PySpark DataFrame创建一个parquet文件...查询 DataFrame Pyspark Sql 提供在 Parquet 文件上创建临时视图以执行 sql 查询。...读写Parquet文件的完整示例 import pyspark from pyspark.sql import SparkSession spark=SparkSession.builder.appName

    2.4K40

    在 PySpark 中,如何使用 groupBy() 和 agg() 进行数据聚合操作?

    在 PySpark 中,可以使用groupBy()和agg()方法进行数据聚合操作。groupBy()方法用于按一个或多个列对数据进行分组,而agg()方法用于对分组后的数据进行聚合计算。...以下是一个示例代码,展示了如何在 PySpark 中使用groupBy()和agg()进行数据聚合操作:from pyspark.sql import SparkSessionfrom pyspark.sql.functions...读取数据并创建 DataFrame:使用 spark.read.csv 方法读取 CSV 文件,并将其转换为 DataFrame。...header=True 表示文件的第一行是列名,inferSchema=True 表示自动推断数据类型。...按某一列进行分组:使用 groupBy("column_name1") 方法按 column_name1 列对数据进行分组。进行聚合计算:使用 agg() 方法对分组后的数据进行聚合计算。

    3.1K10

    spark 数据处理 -- 数据采样【随机抽样、分层抽样、权重抽样】

    它是从一个可以分成不同子总体(或称为层)的总体中,按规定的比例从不同层中随机抽取样品(个体)的方法。这种方法的优点是,样本的代表性比较好,抽样误差比较小。缺点是抽样手续较简单随机抽样还要繁杂些。...highlight=sample#pyspark.RDD.sample pyspark dataframe 文档: http://spark.apache.org/docs/latest/api/python.../reference/api/pyspark.sql.DataFrame.sample.html?...highlight=sample#pyspark.sql.DataFrame.sample scala 版本 sampleBy def sampleBy[T](col: String, fractions...rdd2=testDS.rdd RDD 转 DataFrame: // 一般用元组把一行的数据写在一起,然后在toDF中指定字段名 import spark.implicits._ val testDF

    7.3K10

    【PySpark大数据分析概述】03 PySpark大数据分析

    pyspark.sql模块中的SparkSession、DataFrame。...SQL模块 pyspark.sql.SparkSession PySpark SQL编程入口点 SQL模块 pyspark.sql.DataFrame 处理结构化数据 (一)PySpark公共类 PySpark...(二)PySpark SQL模块 pyspark.sql模块包含10个类,提供了类型、配置、DataFrame和许多其他功能的SQL函数和方法,PySpark SQL模块相关类说明见表3。...表3 PySpark SQL模块相关类说明 类名 说明 SparkSession PySpark SQL编程的入口点 Column 用来表示DataFrame中的列 Row 用来表示DataFrame...中的行 GroupedData 用于提供DataFrame中的汇总功能 types 定义DataFrame中的数据类型 Functions 提供丰富、常用的功能,如数学工具、日期计算、数据转换等 Window

    1.1K10

    Spark SQL

    Spark SQL增加了DataFrame(即带有Schema信息的RDD),使用户可以在Spark SQL中执行SQL语句,数据既可以来自RDD,也可以是Hive、HDFS、Cassandra等外部数据源...Spark SQL填补了这个鸿沟: 首先,可以提供DataFrame API,可以对内部和外部各种数据源执行各种关系型操作 其次,可以支持大数据中的大量数据源和数据分析算法 Spark SQL可以融合:...二、DataFrame概述 Spark SQL所使用的数据抽象并非RDD,而是DataFrame。...people where age > 20") #DataFrame中的每个元素都是一行记录,包含name和age两个字段,分别用p.name和p.age来获取值 >>> personsRDD=personsDF.rdd.map...步骤如下: 下面是利用Spark SQL查询people.txt的完整代码: >>> from pyspark.sql.types import * >>> from pyspark.sql

    1.1K10

    PySpark源码解析,教你用Python调用高效Scala接口,搞定大规模数据分析

    本文主要从源码实现层面解析 PySpark 的实现原理,包括以下几个方面: PySpark 的多进程架构; Python 端调用 Java、Scala 接口; Python Driver 端 RDD、SQL...4、Executor 端进程间通信和序列化 对于 Spark 内置的算子,在 Python 中调用 RDD、DataFrame 的接口后,从上文可以看出会通过 JVM 去调用到 Scala 的接口,最后执行和直接使用...对于直接使用 RDD 的计算,或者没有开启 spark.sql.execution.arrow.enabled 的 DataFrame,是将输入数据按行发送给 Python,可想而知,这样效率极低。...、反序列化,都是调用了 PyArrow 的 ipc 的方法,和前面看到的 Scala 端是正好对应的,也是按 batch 来读写数据。...6、总结 PySpark 为用户提供了 Python 层对 RDD、DataFrame 的操作接口,同时也支持了 UDF,通过 Arrow、Pandas 向量化的执行,对提升大规模数据处理的吞吐是非常重要的

    6.5K40
    领券