首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R语言-向量和数据框

一、R语言的数据类型 向量(vector) 矩阵(Matrix) 数组(Array) 数据框(Data frame) List 向量是由元素组成的,元素可以是数字或者字符串。...到4个元素 x[-(2:4)]#除了第2-4个元素 x[c(1,5)] #第1个和第5个元素 (2)根据值 x[x==10]#等于10的元素 x[x<0] x[x %in% c(1,2,5)]#存在于向量...c(1,2,5)中的元素 三、数据框 1、注意先把数据集放在工作目录下 2、读取 read.table(file = "×××.txt") a中可添加以下代码 header= T #设置表格列名 sep = "" #设置分列(通常会根据制表符分列,不须设置) 3、查看 colnames(a) #查看列名 rownames(a)...#查看行名,默认值的行名就是行号,1.2.3.4... dim(a)#几行几列 4、导出 write.table(a,file = "yu.txt",sep = ",",quote=F) #分隔符改为逗号

18910
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas数据重命名:列名与索引为标题

    引言在数据分析和处理中,Pandas 是一个非常强大的工具。它提供了灵活的数据结构和丰富的操作方法,使得数据处理变得更加简单高效。其中,对数据的列名和索引进行重命名是常见的需求之一。...本文将从基础概念出发,逐步深入探讨如何使用 Pandas 对列名和索引进行重命名,并介绍一些常见问题、报错及解决方案。...使用 rename() 方法重命名部分列名# 只修改部分列名df.rename(columns={'Col1': 'Column1', 'Col2': 'Column2'}, inplace=True)...处理缺失值如果数据中存在缺失值,在重命名时可能会遇到意外情况。...本文介绍了几种常见的重命名方法,并讨论了一些常见问题及其解决方案。希望这些内容能够帮助你在实际工作中更好地使用 Pandas 进行数据处理。

    27910

    机器学习中的数学(6)-强大的矩阵奇异值分解(SVD)及其应用

    上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。...特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景。...特征值分解是将一个矩阵分解成下面的形式: ? 其中Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对角阵,每一个对角线上的元素就是一个特征值。我这里引用了一些参考文献中的内容来说明一下。...奇异值σ跟特征值类似,在矩阵Σ中也是从大到小排列,而且σ的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。...最后一个矩阵Y中的每一列表示同一主题一类文章,其中每个元素表示这类文章中每篇文章的相关性。中间的矩阵则表示类词和文章雷之间的相关性。

    1.4K70

    【踩坑】探究PyTorch中创建稀疏矩阵的内存占用过大的问题

    转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~ 目录 问题复现 原因分析 解决方案 碎碎念 问题复现 创建一个COO...格式的稀疏矩阵,根据计算公式,他应该只占用约5120MB的内存: 但通过nvidia-smi查看,实际上占用了10240MB: 网上对此的讨论又是没有找到,只好又是自己一点点摸索...其中,active_bytes.all.current 表示当前正在使用的所有活跃内存总量。在输出中,这个值为 8598454272 字节,约等于 8192 MB。...reserved_bytes.all.current 表示当前已保留的所有内存总量。在输出中,这个值为 14250147840 字节,约等于 13595 MB。...比如以下这个连续创建矩阵的,那么在创建第二个矩阵的时候,就不会再去申请新的内存,而是会放在保留内存里。

    16610

    在Python中创建相关系数矩阵的6种方法

    相关系数矩阵(Correlation matrix)是数据分析的基本工具。它们让我们了解不同的变量是如何相互关联的。...在Python中,有很多个方法可以计算相关系数矩阵,今天我们来对这些方法进行一个总结 Pandas Pandas的DataFrame对象可以使用corr方法直接创建相关矩阵。...值 如果你正在寻找一个简单的矩阵(带有p值),这是许多其他工具(SPSS, Stata, R, SAS等)默认做的,那如何在Python中获得呢?...= sns.load_dataset('mpg') result = corr_full(df, rows=['corr', 'p-value']) result 总结 我们介绍了Python创建相关系数矩阵的各种方法...Python中大多数工具的标准默认输出将不包括p值或观察计数,所以如果你需要这方面的统计,可以使用我们子厚提供的函数,因为要进行全面和完整的相关性分析,有p值和观察计数作为参考是非常有帮助的。

    95240

    【译】.NET中六个重要的概念:栈、堆、值类型、引用类型、装箱和拆箱

    堆和栈 值类型和引用类型 哪些是值类型,哪些是引用类型? 装箱和拆箱 装箱和拆箱的性能问题 一、概述   本文会阐述六个重要的概念:堆、栈、值类型、引用类型、装箱和拆箱。...本文首先会通过阐述当你定义一个变量之后系统内部发生的改变开始讲解,然后将关注点转移到存储双雄:堆和栈。之后,我们会探讨一下值类型和引用类型,并对有关于这两种类型的重要基础内容做一个讲解。   ...换句话说,也就是最先进入栈中的数据项有可能最后才会出栈。 Line 3:在第三行中,我们创建了一个对象。...当我们将一个int类型的值赋值到另一个int类型的值时,它实际上是创建了一个完全不同的副本。换句话说,如果你改变了其中某一个的值,另一个不会发生改变。于是,这些种类的数据类型被称为“值类型”。...下图则详细地展示了在.NET预置类型中,哪些是值类型,哪些又是引用类型。 ? 六、装箱和拆箱   现在,你已经有了不少的理论基础了。现在,是时候了解上面的知识在实际编程中的使用了。

    36220

    问与答127:如何列出并统计列表中的唯一值?

    Q:在一列中包含有很多数据,我想使用公式来列出并统计其唯一值,我不想使用数据透视表,下图1所示为示例数据。 ? 图1 使用公式,在列C中列出其唯一值,列D中列出这些值相应出现的数量。...),0) 其中,使用: COUNTIF(C1:C1,A2:A25) 计算第二个区域A2:A25中,每个单元格中的值在第一个区域中出现的次数,要么是1(表明出现了),要么是0(表明没有出现,即没有这个值)...,而这正是我们查找的唯一值。...然后,使用MATCH执行精确匹配查找,所得到的位置也就是该值在区域A2:A25中的位置。再将结果传递给INDEX函数,从而获取值。...在单元格D2中输入公式: =COUNTIF(A2:A25,C2) 统计获取的唯一值在原列表中出现的次数,如下图3所示。 ? 图3 最后,向下复制公式得到最终结果,如下图4所示。 ?

    7.6K30

    看了这个例子,一辈子记住这个有趣的函数,以后给内容配对就有思路了

    看图: 逆透视是多列(列名)都逐个放到行里变明细数据哦,而上面想要的结果列和原始数据的列是一毛一样的,只是要把列里面的内容拆分、配对展开…… 数据简化模拟如下:...所以,首先第一步,不管怎么着,先把列给拆分了,但是,这里不好用拆分列的功能来做,为什么?...1、不能拆分到行:因为要分别对两列的内容进行拆分且找配对关系,先拆任何一列都会使配对关系丢失; 2、不能拆分到列:因为要拆分的内容的项数是不固定的。...- 1 - 拆分内容 Step 01:用函数拆分列 同样拆分“序号”列,得到结果如下(现在先讲分步解法,怎么综合各步骤函数一条公式搞定的事情等会儿再讲): - 2 - 内容配对...) Step 04:第二次展开,提取值(因为配对好的内容本身是要在同一行里的,分隔符按需要选择即可,后面拆分列时用,这里选择空格) Step 05:提取出来后,再按前面选择的分隔符简单分列即可

    95740

    矩阵特征值分解(EDV)与奇异值分解(SVD)在机器学习中的应用

    文章目录 说明 特征分解定义 奇异值分解 在机器学习中的应用 参考资料 百度百科词条:特征分解,矩阵特征值,奇异值分解,PCA技术 https://zhuanlan.zhihu.com/p/29846048...,常能看到矩阵特征值分解(EDV)与奇异值分解(SVD)的身影,因此想反过来总结一下EDV与SVD在机器学习中的应用,主要是表格化数据建模以及nlp和cv领域。...设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。...奇异值分解 奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。...假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为: 在机器学习中的应用 在表格化数据中的应用 (1)PCA降维 PCA(principal components analysis

    1.2K20

    python df 列替换_如何用Python做数据分析,没有比这篇文章更详细的了(图文详情)...

    1import numpy as np  2import pandas as pd  导入数据表  下面分别是从 excel 和 csv 格式文件导入数据并创建数据表的方法。...主要内容包括对空值,大小写问题,数据格式和重复值的处理。这里不包含对数据间的逻辑验证。  处理空值(删除或填充)  我们在创建数据表的时候在 price 字段中故意设置了几个 NA 值。...']=1  sign  数据分列  与数据分组相反的是对数值进行分列,Excel 中的数据目录下提供“分列”功能。...在 python 中使用 split 函数实现分列。  数据分列  在数据表中 category 列中的数据包含有两个信息,前面的数字为类别 id,后面的字母为 size 值。中间以连字符进行连接。...1#对 category 字段的值依次进行分列,并创建数据表,索引值为 df_inner 的索引列,列名称为 category 和 size  2pd.DataFrame((x.split('-') for

    4.5K00

    矩阵特征值-变化中不变的东西

    揭示矩阵的本质: 特征值和特征向量告诉我们,矩阵在进行线性变换时,哪些方向上的向量只发生缩放,而不会改变方向。...矩阵对角化: 通过特征值和特征向量,我们可以将矩阵对角化,这在很多计算中会带来很大的方便。 构造特征方程: det(A - λI) = 0 其中,I是单位矩阵。...解特征多项式方程,得到的λ就是矩阵A的特征值。构造特征方程: 特征矩阵的行列式就是特征多项式。 特征矩阵是构造特征多项式的基础。 特征多项式的根就是矩阵的特征值。...关注的是特征值在方程中的出现次数,是一个代数概念。代数重数反映了特征值的重要性,重数越大,特征值对矩阵的影响就越大。代数重数就像一个人的年龄,它是一个固定的数值,表示一个人存在的时间长度。...几何重数反映了特征空间的维度,即对应于该特征值的特征向量张成的空间的维度。就像一个人在社交圈中的影响力,它反映了这个人有多少个“铁杆粉丝”。一个人的年龄可能会很大,但他的影响力不一定很大。

    12710

    Excel公式练习:查找每行中的最小值并求和(续)

    在《Excel公式练习:查找每行中的最小值并求和》中,我们提供的示例数据每行只有2列,如果数据有3列,又如何求每行最小值之和呢? 本次的练习是:如下图1所示,求每行最小值之和。...解决方案 公式1:《Excel公式练习:查找每行中的最小值并求和》中的公式5可以应用到3列: =SUM(LARGE(A1:C10,MOD(LARGE(ROW(A1:C10)*10^6+RANK(A1:C10...RANK函数应用于整个范围A1:C10时,返回以下值矩阵: {23,26,27; 11,8,6; 8,11,15; 6,5,3; 3,8,20; 23,20,15; 11,29,20; 15,15,15...如果我们现在对这些组合值使用LARGE函数,很明显,最后一行(第10行)中的3个值将位于结果数组的顶部;接下来是第9行中的3个值,然后是第8行中的3个值,依此类推,直到最后3个元素成为第1行中的3个值。...稍等,总结一下我们到目前为止所讲解的: 1.使用RANK函数返回值矩阵,按以下顺序对原始数据进行排序:原始数据集中的最大值分配秩1,原始数据集中的最小值分配秩30。

    2.4K40

    AI办公自动化:Excel表格数据批量整理分列

    工作任务:下面表格中的,、分开的内容进行批量分列 在chatgpt中输入提示词: 你是一个Python编程专家,完成一个脚本编写任务,具体步骤如下: 读取Excel文件:""F:\AI自媒体内容\AI行业数据分析...try: # 读取Excel文件 http://logging.info(f"读取 Excel 文件: {input_file}") df = pd.read_excel(input_file) # 检查列名并找到第一列...else: first_column_name = df.columns[0] http://logging.info(f"使用第一个列名: {first_column_name}") # 删除第一列单元格内容后面的数字...split_data = [] # 分拆单元格内容 http://logging.info("分拆单元格内容") for cell in df[first_column_name]: if '、' in...' ' in cell: split_items = cell.split() else: split_items = [cell] split_data.append(split_items) # 创建一个新的

    15610

    mysql查询字段中带空格的值的sql语句,并替换

    (自己写的这四行)查询带有空格值的数据:SELECT * FROM 表名 WHERE 字段名 like ‘% %’; 去掉左边空格 update tb set col=ltrim(col); 去掉右边空格...replace 代码如下 复制代码 update `news` set `content`=replace(`content`,’ ‘,”);//清除news表中content字段中的空格 这样就可以直接用...,如果数据库中的这个字段的值含有空格(字符串内部,非首尾),或者我们查询的字符串中间有空格,而字段中没有空格。...这样就可以正确的进行匹配了,如果不希望给mysql太多压力,条件部分的对空格的处理我们可以在程序中实现。...补充:MySQL中关于查询条件中的字符串空格问题 https://blog.csdn.net/alibert/article/details/40981185 假设当前mysql数据库中有个表:sysuser

    9.4K20

    如何对矩阵中的所有值进行比较?

    如何对矩阵中的所有值进行比较? (一) 分析需求 需求相对比较明确,就是在矩阵中显示的值,需要进行整体比较,而不是单个字段值直接进行的比较。如图1所示,确认矩阵中最大值或者最小值。 ?...可以通过summarize构建维度表并使用addcolumns增加计算的值列,达到同样的效果。之后就比较简单了,直接忽略维度计算最大值和最小值再和当前值进行比较。...通过这个值的大小设置条件格式,就能在矩阵中显示最大值和最小值的标记了。...当然这里还会有一个问题,和之前的文章中类似,如果同时具备这两个维度的外部筛选条件,那这样做的话也会出错,如图3所示,因为筛选后把最大值或者最小值给筛选掉了,因为我们要显示的是矩阵中的值进行比较,如果通过外部筛选后...,矩阵中的值会变化,所以这时使用AllSelect会更合适。

    7.8K20

    Numpy和pandas的使用技巧

    ,相当于shape中n*m的值,改变原序列 ndarray.itemsize,数组每个元素大小,以字节为单位 ndarray.dtype 数组元素类型 ndarray.nbytes...数组中的所有数据消耗掉的字节数 ndarray.flags 数组对象的内存信息 2.5、矩阵的维度 0维矩阵 A=3.6 A.shape=() 1维矩阵...],[7,8]]] A.shape=(2,2,2) 3、创建特殊矩阵, np.ones((3,3)) 创建指定行列的数值为浮点1的矩阵 np.zeros((3,3)) 创建指定行列的数值为浮点...0的矩阵 np.identity(n,type) 创建指定阶数指定元素类型的单位矩阵 np.eye(n, M, k, dtype) 创建单位对角矩阵,对角元素为1,其他位置为0.n: 返回矩阵的行数...+Enter #运行当前代码块并选中下一个代码块(没有就创建),Shift+Enter 清除缓存kernel -> restart Jupyter的优点是允许将变量放到内存中,可以直接进行类型推断

    3.6K30

    如何在Python 3中安装pygame并创建用于开发游戏的模板

    本教程将首先将pygame安装到您的Python编程环境中,然后引导您创建一个模板以使用pygame和Python 3开发游戏。...导入pygame 为了熟悉pygame,让我们创建一个名为our_game.py的文件,我们可以使用nano文本编辑器创建,例如: nano our_game.py 在pygame中开始项目时,您将从用...创建游戏循环 随着pygame的导入和初始化,显示集以及游戏界面的更新,我们可以开始处理我们的主游戏循环。 我们将创建一个运行游戏的while循环。...循环将调用布尔值True,这意味着循环将永远循环,除非它被中断。...想要了解更多关于安装pygame并创建用于开发游戏的模板的相关教程,请前往腾讯云+社区学习更多知识。

    25.6K22
    领券