首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    开发 | 不用写代码就能实现深度学习?手把手教你用英伟达 DIGITS 解决图像分类问题

    引言 2006年,机器学习界泰斗Hinton,在Science上发表了一篇使用深度神经网络进行维数约简的论文 ,自此,神经网络再次走进人们的视野,进而引发了一场深度学习革命。深度学习之所以如此受关注,是因为它在诸如图像分类、目标检测与识别、目标跟踪、语音识别、游戏(AlphaGo)等多个领域取得了相当优秀的成绩,掀起了又一波人工只能浪潮。深度学习技术逐渐成为机器学习领域的前沿技术,近年来得到了突飞猛进的发展,这得益于机器学习技术的进步以及计算设备性能的提升。英伟达公司研发的图形处理器(Graphics

    09

    入门项目数字手写体识别:使用Keras完成CNN模型搭建

    对于图像分类任务而言,卷积神经网络(CNN)是目前最优的网络结构,没有之一。在面部识别、自动驾驶、物体检测等领域,CNN被广泛使用,并都取得了最优性能。对于绝大多数深度学习新手而言,数字手写体识别任务可能是第一个上手的项目,网络上也充斥着各种各样的成熟工具箱的相关代码,新手在利用相关工具箱跑一遍程序后就能立刻得到很好的结果,这时候获得的感受只有一个——深度学习真神奇,却没能真正了解整个算法的具体流程。本文将利用Keras和TensorFlow设计一个简单的二维卷积神经网络(CNN)模型,手把手教你用代码完成MNIST数字识别任务,便于理解深度学习的整个流程。

    01

    TensorFlow从0到1 | 第十一章 74行Python实现手写体数字识别

    到目前为止,我们已经研究了梯度下降算法、人工神经网络以及反向传播算法,他们各自肩负重任: 梯度下降算法:机器自学习的算法框架; 人工神经网络:“万能函数”的形式表达; 反向传播算法:计算人工神经网络梯度下降的高效方法; 基于它们,我们已经具备了构建具有相当实用性的智能程序的核心知识。它们来之不易,从上世纪40年代人工神经元问世,到80年代末反向传播算法被重新应用,历经了近半个世纪。然而,实现它们并进行复杂的数字手写体识别任务,只需要74行Python代码(忽略空行和注释)。要知道如果采用编程的方法(非学习的

    014

    深度学习碰上古文献,西南大学提出基于CNN的古彝文识别方法

    摘要:作为世界六大古文字之一的古彝文记录下几千年来人类发展历史。针对古彝文的识别能够将这些珍贵文献材料转换为电子文档,便于保存和传播。由于历史发展,区域限制等多方面原因,针对古彝文识别的研究鲜有成果。本文把当前新颖的深度学习技术,应用到古老的文字识别中去。在四层卷积神经网络(Convolutional Neural Network, CNN)的基础上扩展出 5 个模型,然后再利用 Alpha-Beta 散度作为惩罚项对 5 个模型的输出神经元重新进行自编码,接着用两个全连接层完成特征压缩,最后在 softmax 层对古彝文字符特征进行重新评分,得到其概率分布,选择对应的最高概率作为识别的字符。实验表明本文所提方法相对于传统 CNN 模型而言对古彝文手写体的识别具有较高的精度。

    02
    领券