主要原因是SparkSQL是一种声明式编程风格,背后的计算引擎会自动做大量的性能优化工作。 基于RDD的Spark的性能调优属于坑非常深的领域,并且很容易踩到。...我们将介绍Spark调优原理,Spark任务监控,以及Spark调优案例。...如果程序执行太慢,调优的顺序一般如下: 1,首先调整任务并行度,并调整partition分区。 2,尝试定位可能的重复计算,并优化之。 3,尝试定位数据倾斜问题或者计算倾斜问题并优化之。...计算倾斜出现后,一般可以通过舍去极端数据或者改变计算方法优化性能。 堆内内存:on-heap memory, 即Java虚拟机直接管理的存储,由JVM负责垃圾回收GC。...三,Spark调优案例 下面介绍几个调优的典型案例: 1,资源配置优化 2,利用缓存减少重复计算 3,数据倾斜调优 4,broadcast+map代替join 5,reduceByKey/aggregateByKey
WHERE column1 = -column2 3 还是可以带来查询性能的优化的。...针对专门操作符的调优 前面,讲的是关于查询条件的一般规则,在这一节中,将讨论如何使用专门的操作符来改进 SQL 代码的性能。...这是一个很好的合并数据的方法,但是这并不是最好的方法。...以上是作者对如何提高 SQL 性能的一些总结,这些规则并一定在所有的数据库系统上都能带来性能的提高,但是它们一定不会对数据库的性能带来下降,所以掌握并使用这些规则可以对数据库 应用程序的开发有所帮助。...本文总结的是一些 SQL 性能调优的比较初级的方面,SQL 调优还包括 Order by,Group by 以及 Index 等等。
因此在对Web 容器( 应用服务器) 的调优中必不可少的是对于 JVM 的调优。...对于 JVM 的调优,主要有两个方面考虑: 内存大小配置 垃圾回收算法选择 当然,确切的说,以上两点并不互相独立,内存的大小配置也会影响垃圾回收的执行效率。...延迟、吞吐量调优 其他 JVM 配置 垃圾回收算法对应到的就是不同的垃圾收集器,具体到在 JVM 中的配置,是使用 -XX:+UseParallelOldGC 或者 -XX:+UseConcMarkSweepGC...所谓调优,就是一个不断调整和优化的过程,需要观察、配置、测试再如此重复。有相关经验的朋友欢迎留言补充! 说到底,那上面的这些选项是要配置在哪里呢?
调优概述 大多数 Spark 作业的性能主要就是消耗在了 shuffle 环节,因为该环节包含了大量的磁盘IO、序列化、网络数据传输等操作。...因此,如果要让作业的性能更上一层楼,就有必要对 shuffle 过程进行调优。...但是也必须提醒大家的是,影响一个 Spark 作业性能的因素,主要还是代码开发、资源参数以及数据倾斜,shuffle 调优只能在整个 Spark 的性能调优中占到一小部分而已。...调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。...,建议参考后面的几个参数调优,通过 bypass 机制或优化的 HashShuffleManager 来避免排序操作,同时提供较好的磁盘读写性能。
Spark的性能调优实际上是由很多部分组成的,不是调节几个参数就可以立竿见影提升作业性能的。...笔者根据之前的Spark作业开发经验以及实践积累,总结出了一套Spark作业的性能优化方案。整套方案主要分为开发调优、资源调优、数据倾斜调优、shuffle调优几个部分。...开发调优和资源调优是所有Spark作业都需要注意和遵循的一些基本原则,是高性能Spark作业的基础;数据倾斜调优,主要讲解了一套完整的用来解决Spark作业数据倾斜的解决方案;shuffle调优,面向的是对...本文作为Spark性能优化指南的基础篇,主要讲解资源调优。 2. 资源调优 2.1 调优概述 在开发完Spark作业之后,就该为作业配置合适的资源了。...这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。 参数调优建议:Spark作业的默认task数量为500-1000个较为合适。
如果没有对Spark作业进行合理的调优,Spark作业的执行速度可能会很慢,这样就完全体现不出Spark作为一种快速大数据计算引擎的优势来。因此,想要用好Spark,就必须对其进行合理的性能优化。...Spark的性能调优实际上是由很多部分组成的,不是调节几个参数就可以立竿见影提升作业性能的。...笔者根据之前的Spark作业开发经验以及实践积累,总结出了一套Spark作业的性能优化方案。整套方案主要分为开发调优、资源调优、数据倾斜调优、shuffle调优几个部分。...开发调优和资源调优是所有Spark作业都需要注意和遵循的一些基本原则,是高性能Spark作业的基础;数据倾斜调优,主要讲解了一套完整的用来解决Spark作业数据倾斜的解决方案;shuffle调优,面向的是对...本文作为Spark性能优化指南的基础篇,主要讲解开发调优。 2. 开发调优 2.1 调优概述 Spark性能优化的第一步,就是要在开发Spark作业的过程中注意和应用一些性能优化的基本原则。
但是 如果你使用 innodb_flush_log_at_trx_commit = 2 可以获得接近的读取性能 (相差百倍) 。...方法 1 ?...对于 InnoDB 数据库,可以用以下方法,进行数据预热: 1. 将以下脚本保存为 MakeSelectQueriesToLoad.sql ?...激进的方法,使用内存磁盘 现在基础设施的可靠性已经非常高了,比如 EC2 几乎不用担心服务器硬件当机。而且内存实在是便宜,很容易买到几十G内存的服务器,可以用内存磁盘,定期备份到磁盘。...当然不用连接池 PHP 程序也可能将 连接数占满比如用了 @ignore_user_abort(TRUE); 使用 IP 而不是域名做数据库路径,避免 DNS 解析问题 以上就是10个MySQL性能调优的方法
引言 Elasticsearch性能调优对于提升系统整体效能至关重要。然而,性能调优并非一蹴而就,需要深入理解ES的内部工作机制,并结合实际业务场景进行精细化调整。...本文将深入解释ES性能调优方法的原理,结合具体案例展示如何在实际应用中优化ES性能。 1....高级调优技巧 脚本优化 避免在查询中使用复杂的脚本:脚本查询通常比DSL查询慢得多,应尽量避免在高频查询中使用脚本。..."scroll_id": "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==" } 结语 Elasticsearch性能调优是一个持续的过程...希望本文提供的详细分析和建议能够帮助读者更好地理解和应用Elasticsearch性能调优方法,提升系统的整体效能。同时,也鼓励读者不断探索和实践新的调优策略,以适应不断变化的业务需求和技术环境。
指定了接收和发送套接字缓冲区大小的最大值,对于小文件小文件请求处理时候效率比较高 net.core.rmem_max=67108864 net.core.wmem_max=67108864 //为自动调优定义每个...net.ipv4.tcp_rmem=33554432 net.ipv4.tcp_wmem=33554432 Gluster参数调优 读写性能参数优化 // 打开metadata-cache,打开这个选项可以提高在...这尤其会影响小文件的性能,其中大量文件被快速连续地添加/创建。...gluster volume get dht-vol performance.readdir-ahead on // 设置performance.readdir-ahead的内存,默认是10mb,可以适当调大...rep-vol cluster.shd-max-threads 64 //修复的数据快大小,默认是1(1*128k),默认是按照128K数据快修复,如果需要修复的数据很大,这个默认1太小,可以适当的调大
Spark 调优和 JVM 调优的关系 再JVM虚拟机中,当创建的对象的数量很多时,Eden 和 Survior1 区域会很快的满溢,就需要进行频繁地 Minor GC,这样会导致有一些生命周期较短的对象迅速长到...Spark的JVM调优 spark.storage.memoryFraction 参数说明: 该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。...根据你选择的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘 参数调优建议: 如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中...shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能 参数调优建议: 如果Spark作业中的RDD持久化操作较少,shuffle...操作数量、RDD持久化操作数量以及spark web ui中显示的作业gc情况)来灵活的调优 4.
Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。 参数调优建议: 每个Executor进程的内存设置4G~8G较为合适。...参数调优建议: Executor的CPU core数量设置为2~4个较为合适。...参数调优建议: Driver的内存通常来说不设置,或者设置1G左右应该就够了。...这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。 参数调优建议: Spark作业的默认task数量为500~1000个较为合适。...设置调优参数的3种方法 配置这些参数有两种方式 (1) 在程序中硬编码 例如 sparkConf.set("spark.default.parallelism","100") (2) 提交application
什么是调优?...根据需求进行JVM规划和预调优 优化运行JVM运行环境(慢,卡顿) 解决JVM运行过程中出现的各种问题(OOM) 调优,从规划开始 调优,从业务场景开始,没有业务场景的调优都是耍流氓 无监控(压力测试...扩容或调优,让它达到 用压测来确定 优化环境 有一个50万PV的资料类网站(从磁盘提取文档到内存)原服务器32位,1.5G 的堆,用户反馈网站比较缓慢,因此公司决定升级,新的服务器为64位,16G 的堆内存...PS -> PN + CMS 或者 G1 系统CPU经常100%,如何调优?...(方法已经运行完成),不能改方法名, 不能改属性 m() -> mm() sc - search class watch - watch method 没有包含的功能:jmap
(Connector)进行性能控制的的参数是创建的处理请求的线程数。...例如:在创建对象时或者调用方法时使用的临时对象或局部变量。 年轻代分三个区。一个Eden区,两个Survivor区。大部分对象在Eden区中生成。...这些对象管理着运行于JVM中的类和方法。...注意事项: 设置NewSize、MaxNewSize相等,"new"的大小最好不要大于"old" 的一半,原因是old区如果不够大会频繁的触发主GC,大大降低了性能。...因为对于操作系统,请求内存的系统调用会占用大量的cpu时间,所以频繁的请求、释放内存将会导致性能的严重下降。
开启gzip 查看是否是gzip传输 方法一:浏览器调试界面 方法二:curl1curl localhost/css/icons/icons-vars.css -I -H "Accept-Encoding...: gzip, deflate" webdav的PROPFIND方法不会开启gzip 实测开启gzip传输后页面的加载速度很快,打开页面的感觉也打开大公司高度优化过的页面相同。
后端程序员在面试中,经常会被问到SQL调优的操作,于是我也是去补习了一下这方面的知识,感谢各方大佬提供的点子,这里总结如下。...3- 通常来说,把可以为NULL的列改为NOT NULL不会对性能提升有多少帮助,只是如果计划在列上创建索引,就应该将该列设置为NOT NULL。...因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。当然这对于INT这类型字段属性来讲就画蛇添足了。
方法调用过程, 辅助数据尽量放在方法体内, 避免使用全局辅助数据, 一来节省内存, 二来提高对象可重用性. 十三. 尽量不要生成转瞬即逝的对象, 或者专门构建专属对像来完成这一任务....提供直接使用构造函数参数进行序列化的静态方法, 避免先使用参数构造对象再进行序列化. 2). 参考上述第六点. 十四....比如java.util.Arrays.binarySearch方法的返回值. 十五. 对于方方正正的多位数组Arr[d0][d1][d2].....尽量使key的WritableComparable性能最佳, 尽量使value的Writable性能最佳. 比如使用掩码操作. 十七. 尽早丢弃无关对象.
由于Web应用程序跑在Tomcat工作线程,因此Web应用对请求的处理时间也直接影响Tomcat性能,而Tomcat和Web应用在运行过程中所用到的资源都来自os,因此调优需要将服务端看作是一个整体来考虑...I/O调优指选择NIO、NIO.2还是APR 线程池调优指的是给Tomcat的线程池设置合适的参数,使得Tomcat能够又快又好地处理请求 I/O模型 I/O调优实际上是连接器类型的选择,一般情况下默认都是...APR 除非你的Web应用用到了TLS加密传输,而且对性能要求极高,这个时候可以考虑APR,因为APR通过OpenSSL来处理TLS握手和加/解密。...线程池调优 跟I/O模型紧密相关的是线程池,线程池的调优就是设置合理的线程池参数。...调优很多时候是在找系统瓶颈 假如有个状况:系统响应比较慢,但CPU的用率不高,内存有所增加,通过分析Heap Dump发现大量请求堆积在线程池的队列中,请问这种情况下应该怎么办呢?
acceptCount="700"//指定当所有可以使用的处理请求的线程数都被使用时,可以放到处理队列中的请求数,超过这个数的请求将不予处理 maxthread太多,导致切换过多,性能下降严重...通过网上搜索,具体解决方法如下: server.xml中的配置HTTPS的那部分Connector代码 <Connector port="8443" protocol="HTTP/1.1" SSLEnabled
一定要在action操作之后; 2、Spark项目开发流程: 数据调研 --> 需求分析 --> 技术方案设计 --> 数据库设计 --> 编码实现 --> 单元测试 --> 本地测试 --> 性能调优...--> Troubshoting --> 数据倾斜解决 3、常规性能调优: 3.1、分配更多资源 性能和速度的提升在一定范围内和运算资源成正比 (1)分配哪些资源?...sparkConf.set("spark.locality.wait","10") spark.locality.node spark.locality.wait.rack 4、JVM调优...大大延长了作业时长; 可以通过参数调节等待时长,从而避免文件拉取失败: --conf spark.core.connection.ack.wait.timeout = 300 ; 5、Shuffle调优...将会导致多次磁盘写操作,如果reduce端内存不够用,也可能会导致频繁的spill; (3)查看Spark UI,如果每个task的shuffle write和shuffle read很大,则可以考虑进行相应调优
原文地址:http://nginx.com/blog/tuning-nginx/ Tuning NGINX for Performance Nginx 性能调优 NGINX is well known...一个很好的原则是调优时每次只修改一个配置,如果对配置的修改不能提高性能的话,改回默认值。...我们将从Linux调优开始因为有些值会影响到你调优Nginx时用到的一些配置参数。...如果你高速率的接入并且你的性能配置不均衡,例如一些连接出现延时的情况,那么下面的调优配置将起到作用。...还有一些不是非要放到调优这个标题下的Nginx功能能够提高一个网站应用的性能,但是依然要提一下因为他们的影响是值得注意的。我们讨论这其中的两个功能。
领取专属 10元无门槛券
手把手带您无忧上云