分布式文件系统 分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源并不直接与本地节点相连,而是分布于计算网络中的一个或者多个节点的计算机上。目前意义上的分布式文件系统大多都是由多个节点计算机构成,结构上是典型的客户机/服务器模式。流行的模式是当客户机需要存储数据时,服务器指引其将数据分散的存储到多个存储节点上,以提供更快的速度,更大的容量及更好的冗余特性。 目前流行的分布式文件系统有许多,如MooseFS、FastDFS、GlusterFS、Ceph、Mogile
系统的运作会需要计算器服务主机的支持,为了使用更加方便,多数都是会选择云服务器主机,但是不同的使用途径需求的配置不一样,如果是普通的网站对配置相对较低,只需要满足日常的数据上传和访问即可,但购物类的平台相对要考虑到特别是大促活动的时候大量的点击率和交易所带来的数据计算需求,会在配置要求上高一些,但如果是大数据库的话,自然配置会更高一些,那么如何选购数据库服务器呢,需要了解运行的核心数据。
OcceanBase是淘宝开源的一个分布式关系数据库,以下是其官方地址:https://oceanbase.alipay.com/
如果你计划在 Master 服务器上还同时运行 ZK 的话,首先需要更新 conf/zoo.cfg 中的配置来确定你如何运行 ZK。 然后你可以选择在启动 ZK 的同时启动 Master 服务器。
为了分享过去一年云原生产业联盟(CNIA)在标准建设、评估测试、技术研究、实践合作等方面的工作成果、探索行业最新趋势动态,云原生产业联盟于2023年1月9日举办了2022年度线上年会,发布了“大数据云原生能力成熟度模型”,并进行了标准解读。 云原生时代,数据系统的技术架构正在多样化用户需求的驱动下快速演进。容器、Serverless、CI/CD、Kubernetes等云原生技术与大数据系统的深度融合,可以有效应对海量、异构、实时的用户数据处理请求。充分利用云原生平台能力实现大数据系统的“云原生”转型升级,已
典型的现代关系数据库在某些类型的应用程序中表现平平,难以满足如今的互联网应用程序的性能和可扩展性要求。因此,需要采用不同的方法。在过去几年中,一种新的数据存储类型变得非常流行,通常称为 NoSQL,因为它可以直接解决关系数据库的一些缺陷。Riak 就是这类数据存储类型中的一种。 Riak 并不是惟一的一种 NoSQL 数据存储。另外两种较流行的数据存储是 MongoDB 和 Cassandra。尽管在许多方面十分相似,但是它们之间也存在明显的不同。例如,Riak 是一种分布式系统,而 MongoDB 是一种单独的系统数据库,也就是说,Riak 没有主节点的概念,因此在处理故障方面有更好的弹性。尽管 Cassandra 同样是基于 Amazon 的 Dynamo 描述,但是它在组织数据方面摒弃了向量时钟和相容散列等特性。Riak 的数据模型更加灵活。在 Riak 中,在第一次访问 bucket 时会动态创建这些 bucket;Cassandra 的数据模型是在 XML 文件中定义的,因此在修改它们过后需要重启整个集群。 Riak 是用 Erlang 编写的。而 MongoDB 和 Cassandra 是用通用语言(分别为 C++和 Java)编写,因此 Erlang 从一开始就支持分布式、容错应用程序,所以更加适用于开发 NoSQL 数据存储等应用程序,这些应用程序与使用 Erlang 编写的应用程序有一些共同的特征。 Riak支持Map/Reduce 作业,但是Map/Reduce 作业只能使用 Erlang 或 JavaScript 编写。
本文将为你详述如何在 Kubernetes 集群上安装和配置 Kubeblocks,一种先进的 Kubernetes 集成工具,旨在简化和自动化容器化应用的部署和管理。
GPL:不允许修改后和衍生的代码做为闭源的商业软件发布和销售,修改后该软件产品必须也采用GPL协议;
今天对接完成了SQL自动化上线的一个功能,其实心里还是有点小激动,终于可以很肯定说,数据库方向开始提供的是数据服务,而不是传统意义的工单了。
公司在高速发展中,总会遇到各种各样的网络问题,今天笔者和大家分享一个“公司网站存储需求”的实际案例。
有状态服务或者说数据服务,上线遇到问题很棘手,回滚无济于事;而且数据加载通常都很慢,部署时间长;最终导致不敢修改代码,谨小慎微;服务质量也是能忍就忍,不愿意深度优化。在我负责顺风车LBS以来,感受愈加强烈;区别于无状态服务,数据服务的几个方面需要格外关注。(此处假设数据服务类似redis基于内存,数据量大到需要磁盘存储,关注点会有所不同。)
高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。
作者 | 北京酷克数据科技有限公司解决方案架构师 陈义贤 自 2015 年阿里率先提出的“大中台、小前台”战略以来,很多企业把数据中台当做是加速数字化转型的关键因素之一。如今数据中台已经度过了“七年之痒”,迈入第八个年头,我们看到了数字化进程在持续加速,技术更新迭代也愈加迅速。 近些年来,随着 5G、AI、物联网等技术的普及应用,数据应用场景被释放,数据源不断丰富,数据量持续快速攀升。云原生技术使企业组织能在公共、私有和混合云等现代动态环境中构建和运行可扩展的应用程序,成为数字化技术发展的主流,该趋势也开
前言:在上一篇文章《建立数据指标体系,推动DevOps全链路度量闭环》中,我们描述了基于数据来建立数据指标体系,通过指标体系达到主观事件客观呈现的效果。信通院的一些分析数据表明,企业IT的信息化历程逐渐完成,同时企业对IT的精益运行的需求越来越迫切,在这个场景下,数据的思维和使用能力成为制约提升IT生产效率的桎梏。
在云计算时代,Kubernetes 已经成为容器编排的首选平台。随着越来越多的企业在 Kubernetes 上运行数据库和中间件,与 Kubernetes 兼容的持久化存储解决方案的需求也在上升。
刘如梦,腾竞体育研发工程师,擅长高并发、微服务治理、DevOps,主要负责电竞服务平台架构设计和基础设施建设。 詹雪娇,腾讯云弹性容器服务EKS产品经理,主要负责 EKS 虚拟节点、容器实例相关的产品策划。 业务介绍 自 2019 年,腾竞整个电竞赛事数据服务完全由腾讯云 TKE 容器服务承载。腾竞赛事数据开放平台目前主要提供职业赛事数据的授权与查询,随着斗鱼、虎牙、企鹅、掌盟、微信直播、微博等平台的相继接入,平台整体流量有了爆发式的增长。 此前 2021英雄联盟全球总决赛(以下简称 S11) 期间更是创
向量搜索引擎 Milvus 旨在帮助用户实现海量非结构化数据的近似检索和分析。单个 Milvus 实例可处理十亿级数据规模,而对于百亿或者千亿规模数据的需求,则需要一个 Milvus 集群实例,该实例对于上层应用可以像单机实例一样使用,同时满足海量数据低延迟、高并发业务需求。集群内部处理请求转发、读写分离、水平扩展、动态扩容,为用户提供内存和算力可以无限扩容的 Milvus 实例。Mishards 就是一个 Milvus 分布式解决方案。
分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源并不直接与本地节点相连,而是分布于计算网络中的一个或者多个节点的计算机上。目前意义上的分布式文件系统大多都是由多个节点计算机构成,结构上是典型的客户机/服务器模式。流行的模式是当客户机需要存储数据时,服务器指引其将数据分散的存储到多个存储节点上,以提供更快的速度,更大的容量及更好的冗余特性;
想要弄清楚磁盘阵列恢复,首先就得知道什么是磁盘阵列,磁盘阵列多用于存储服务器,数据服务器等企业级大数据存储领域,磁盘阵列是把多块独立的物理硬盘按不同方式组合起来形成一个逻辑硬盘,当磁盘瘫痪或硬件损坏后,为了恢复存储在阵列平台的数据被称之为磁盘阵列数据恢复,而磁盘阵列能够提供比单个硬盘有着更高的性能和提供数据冗余的技术。
很多以文件为载体的在线服务,如相册网站、视频网站等,都需要对文件进行管理,包括文件的存储、同步、访问(文件上传、文件下载)等,同时肯定会伴随着大容量存储和负载均衡的问题。
一、什么是高并发 高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。 高并发相关常用的一些指标有响应时间(Response Time),吞吐量(Throughput),每秒查询率QPS(Query Per Second),并发用户数等。 响应时间:系统对请求做出响应的时间。例如系统处理一个HTTP请求需要200ms,这个200ms就是系统的响应时间。 吞吐量:单位时间内处理的请求数量。 QPS:每秒响应请求数。在互
数据智能,是指以数据为生产要素,通过融合大规模数据处理、数据分析与挖掘、机器学习、数据可视化等多种大数据和人工智能技术,从数据中提炼、发掘具有揭示性和可操作性的信息,从而为企业提供数据驱动的分析与决策。
**分布式存储:**通过网络使用企业中的每台机器上的磁盘空间,并将这些分散的存储资源构成一个虚拟的存储设备,数据分散的存储在企业的各个角落。
每日传输量:17000亿条,约260TB,总存储量为100PB+,公司占比为20%。
作者介绍 ceciliasu(苏翠翠),腾讯云数据库工程师,加入腾讯以来持续从事分布式数据库内核研发工作,曾负责TDSQL PG版、CDW PG快速扩容能力设计和研发。目前主要参与CDW PG数据库内核研发相关工作,负责外部数据快速导入工具的设计和研发。 原生数据导入导出方式以及存在的问题 使用原生COPY导入数据相当耗时,这是因为在CN上执行COPY导入数据是一个串行执行的过程,所有数据都需要经过CN处理分发给不同DN入库,所以CN是瓶颈,它只适合小数据量的导入。 图表 1 COPY数据流向示意图 TD
时间倒回到10月08日,中午吃饭刷着刷着微博发现微博突然挂了。 我一开始以为是家里网不好,后来换了流量刷还是刷不出内容,并且报error,我就知道微博应该是挂了。 往朋友圈一看,原来是鹿晗和关晓彤微博互圈“宣布恋情”了。要不是以前看过《好先生》这部剧没准我还真不认识关晓彤。陆地cp前几天不是还在炒着吗?怎么这么突然?诶..贵圈贼乱啊。 这个时候不同的人就会有如下不同的反应: 老板心里想:哪些家伙在加班又得扣钱了,拿起电话赶快给CTO打了个电话; CTO心里想:这帮家伙叫放假别上线,又乱整,CTO立即联络
当讨论到游戏服务端的时候,我们首先想到的会是什么?要回答这个问题,我们需要从游戏服务端的需求起源说起。
我们知道如要要从磁盘取数据,需要告诉控制器从哪取,取多长等信息,如果这步由应用来做,那实在太麻烦。所以操作系统提供了一个中间层,它管理本地的磁盘存储资源、提供文件到存储位置的映射,并抽象出一套文件访问接口供用户使用。对用户来说只需记住文件名和路径,其他的与磁盘块打交道的事就交给这个中间层来做,这个中间层即为文件系统。
在电商、传统数据量TPS QPS比较大的业务的场景中,DB做为所有链路的核心最低层最重要的一环,他的重要性不言而喻 !但DB也是脆弱的,因为他不是无状态的服务(一、不能同时创建多个数据服务进入写入(MGR目前来看问题依然存在很多) 二、故障恢复的时候强烈依赖之前)压力剧增情况下 如何对他减压是一个非常值得探讨的问题,随着最近几年的发展,JAVA框架 分布式等框架崛起 云厂商更友好的支持,本文就本文以一线DBA角度出发 对关系型数据库减压进行讨探。
主从模式和哨兵模式数据库都存储了相同的数据,比较浪费内存。而且当数据量增加时,在单个数据库上很难实现在线扩容。Redis Cluster将数据分布存储在不同的节点上,每个节点存储不同的数据。添加节点就能解决扩容问题。
分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连,分布式文件系统的实际基于客户机/服务器模式。目前常见的分布式文件系统有很多种,比如Hadoop、Moosefs、HDFS、FastDFS、PNFS(Parallel NFS)、Lustre、TFS、GFS等等一系列。在众多的分布式文件系统解决方案中,MFS是搭建比较简单、使用起来也不需要过多的修改web程序,非常方便。 一、MooseFS是什么 MooseF
上面是一些安全体系系统,如数据安全体系、应用安全体系、前端安全体系等。 中间是业务运营服务系统,如会员服务、商品服务、店铺服务、交易服务等。 还有共享业务,如分布式数据层、数据分析服务、配置服务、数据搜索服务等。 最下面呢,是中间件服务,如MQS即队列服务,OCS即缓存服务等。
图1给出了一个典型的OushuDB集群的主要组件。计算部分和存储部分完全分离,可以独立扩容。在图中有多个OushuDB Master节点。元数据管理服务和资源管理服务位于OushuDB Master内部。其他节点为Slave节点。每个Slave节点上安装有一个OushuDB Segment。Segment实现OushuDB的计算。OushuDB Segment在执行查询的时候会启动多个QE (Query Executor, 查询执行器)。查询执行器运行在资源容器里面。在这个架构下,节点可以动态的加入集群,并且不需要数据重新分布。当一个节点加入集群时,他会向OushuDB Master节点发送心跳,然后就可以接收未来查询了。
1)用户发起请求 2)服务器接受请求 3)服务器处理请求(压力最大) 4)服务器响应请求
分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源并不直接与本地节点相连,而是分布于计算网络中的一个或者多个节点的计算机上。目前意义上的分布式文件系统大多都是由多个节点计算机构成,结构上是典型的客户机/服务器模式。流行的模式是当客户机需要存储数据时,服务器指引其将数据分散的存储到多个存储节点上,以提供更快的速度,更大的容量及更好的冗余特性;
云技术是指在广域网或局域网内将硬件、软件、网络等系列资源统一起来,实现数据的计算、储存、处理和共享的一种托管技术。
本项目涉及的业务数据包括订单、运输、仓储、搬运装卸等物流环节中涉及的数据、信息。由于多年的积累、庞大的用户群,每日的订单数上千万,传统的数据处理技术已无法满足企业需求。因此通过大数据分析可以提高运输配送效率、减少物流成本,更有效地满足客户服务要求,并对数据结果分析,提出具有中观指导意义的解决方案。
给你一个有 n 个服务器的计算机网络,服务器编号为 0 到 n - 1 。 同时给你一个二维整数数组 edges ,其中 edges[i] = [ui, vi] 表示服务器 ui 和 vi 之间有一条信息线路,在 一秒 内它们之间可以传输 任意 数目的信息。 再给你一个长度为 n 且下标从 0 开始的整数数组 patience 。
组成要素: 1)VIP: 给分发器的一个虚IP 2)分发器:nginx 3)数据服务器:web服务器
负载均衡 负载的均衡,是分布式系统中一个永恒的话题,要让大家各尽其力齐心干活,发挥各自独特的优势,不能忙得忙死闲得闲死,影响战斗力。而且,负载均衡也是一个复杂的问题,什么是均衡,是一个很模糊的概念。比如,在分布式文件系统中,总共三百个数据块,平均分配到十个数据服务器上,就算均衡了么?其实不一定,因为每一个数据块需要若干个备份,各个备份的分布应该充分考虑到机架的位置,同一个机架的服务器间通信速度更快,而分布在不同机架则更具有安全性,不会在一棵树上吊死。。。 在这里说的负载均衡,是宽泛意义上的均
本文主要讲述重庆某项目生产集群扩容项目问题总结及复盘。其中部分问题之前有写过相关文档,可参考我之前写的文章《CDH集群安装YARN无法正常启动及解决办法》、《HDFS运行Balancer失败及问题解决办法》、《如何为CDH集群配置机架感知》
导读:快手基于Hive构建数据仓库,并把Hive的元数据信息存储在MySql中,随着业务发展和数据增长,一方面对于计算引擎提出了更高的要求,同时也给Hive元数据库的服务稳定性带来了巨大的挑战。本文将主要介绍Hive MetaStore服务在快手的挑战与优化,包括:
“该项目案例由航班管家提交申报,参与数据猿推出的《寻找新冠战“疫”,中国数据智能产业先锋力量》的公益主题策划活动。
云和大数据时代的到来导致各行各业数据量的爆发,面对业务数据的日益剧增,企业的IT系统在性能、稳定性和扩展性等方面都面临前所未有的巨大挑战。如何有效应对云和大数据的浪潮去拥抱变化,成为企业迫切面临的问题。 数据驱动的时代,一切竞争的核心都会归结于IT系统的竞争,然而传统数据库系统架构面临以下困境: 1、中心化的存储系统成为I/O存取的瓶颈,扩展成本高昂 2、小型机+高端存储,成本高昂,相对比较封闭,扩展能力差。 3、复杂的系统带来部署及操作、运维和管理的复杂性 分布式存储解决方案zData 为更好地保障企业
大数据领域对ClickHouse可谓非常的熟悉了。这个最初由俄罗斯的Yandex公司开发并开源的数据仓库,以单表查询快闻名于世,一改传统Hadoop技术栈“笨,重,慢”的特点。很多时候,ClickHouse的性能相对于Hadoop技术栈,性能有百倍的提升。 ClickHouse的查询性能快,不仅仅在老东家Yandex得到了证实,更是征服了世界各地大量的互联网公司,成为了它们数据分析的不二选择。 然而开源版的ClickHouse要想用好并不是很容易。很多企业用ClickHouse不但没有见到它传说中的极速
该方案,既有面向食品、医药品的制造工厂生产管理系统是包括从原材料投入到生产工序以及成品入库的系统化的软件包产品以及各个业务系统间协同工作的时间同步问题,在亚太地区拥有极高的市场份额和大量的成功用户案例。
领取专属 10元无门槛券
手把手带您无忧上云