首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

产品分享 | 腾讯云智能表格识别V3版本,数据录入提效“神器”

对于广大强迫症患者来说,比较“可怕”的场景莫过于录入信息时对方发来一张张截图;更可怕的情况是截图是一张张表格;地狱级别的情况是表格不但数据海量,格式还多而复杂,使用简单的文字识别应用结果导出一页乱码,甚至出现单元格合并、跨行、跨列、文字重叠错位等情况......简直要逼“死”强迫症。 这时候就轮到强迫症福音——表格识别V3版本上场了。 表格识别V3是腾讯云AI在表格识别V2基础上针对多种难例场景推出的全新升级版本,相比表格识别V2,表格识别V3覆盖场景更加广泛,对表格难例场景的识别效果均优于表格识别V2。

02
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    ICDAR 2019表格识别论文与竞赛综述(上)

    表格作为一种有效的数据组织与展现方法被广泛应用,也成为各类文档中常见的页面对象。随着文档数目的爆炸性增长,如何高效地从文档中找到表格并获取内容与结构信息即表格识别,成为了一个亟待解决的问题。ICDAR是一个专注于文档分析与识别问题的国际学术会议,已经连续多届设置了表格识别专题。在今年的ICDAR 2019会议上,有不少研究者在表格检测与结构识别等领域做出了新的贡献,使其有了新的进展。本课题组梳理了该会议中有关表格识别的16篇论文,总结该领域当前的研究进展与挑战。同时,值得注意的是,该会议也举办了关于表格检测与结构识别的比赛,我们对参赛队伍使用的方法与结果进行了一些讨论。

    07

    TSRFormer:复杂场景的表格结构识别新利器

    大数据文摘转载自微软研究院AI头条 近年来,各大企业和组织机构都在经历数字化转型。将文档转换成计算机所能识别的样态,是数字化转型的关键步骤,如何识别出图片中表格具体的结构与内容,并直接提取其中的数据和信息是学术界和工业界共同瞩目的焦点。然而,目前的表格识别算法多用于识别横平竖直的表格,对于全无边界和实线的表格、行列之间存在大片空白区域的表格等日常生活中常见的表格还没有较好的解决方案,对于拍摄角度倾斜而表格边框弯曲等情况更是束手无策。 今天我们将为大家介绍微软亚洲研究院在表格结构识别方向的最新进展,研究员们提

    01

    AIGC席卷智慧办公,金山办公如何架构文档智能识别与理解的通用引擎?

    如今,智慧办公是企业办公领域数字化转型的题中之义。作为国内最早开发的软件办公系统之一,金山办公如何应用深度学习实现复杂场景文档图像识别和技术理解?本文将从复杂场景文档的识别与转化、非文本元素检测与文字识别、文本识别中的技术难点等多个方面进行深度解析。 作者 | 金山办公CV技术团队 出品 | 新程序员 在办公场景中,文档类型图像被广泛使用,比如证件、发票、合同、保险单、扫描书籍、拍摄的表格等,这类图像包含了大量的纯文本信息,还包含有表格、图片、印章、手写、公式等复杂的版面布局和结构信息。早前这些信息均采用

    01

    文字识别助力智能运营,加速金融业务流转效率

    背景 智慧金融在金融服务的业务流程中不断深入,金融行业数字化建设的过程除了面向外部客户的服务与销售外,行业内部的支持性系统也在随之升级。智能合规、智能运营广泛应用于企业内部财务管理系统、报销系统、核算系统以及审核系统等平台中,促使数据沉淀,加速流程效率,实现数字化建设闭环。 在智能运营覆盖的各个场景中,计算机视觉、自然语言处理、传统机器学习算法等人工智能技术充分应用。其中文字识别技术(OCR)作为计算机视觉的主要方向之一,其识别对象包括扫描合同、印章、卡证、表格与票据信息结构化,在业务办理、风险控制、内部数

    04

    文字识别助力智能运营,加速金融业务流转效率

    背景 智慧金融在金融服务的业务流程中不断深入,金融行业数字化建设的过程除了面向外部客户的服务与销售外,行业内部的支持性系统也在随之升级。智能合规、智能运营广泛应用于企业内部财务管理系统、报销系统、核算系统以及审核系统等平台中,促使数据沉淀,加速流程效率,实现数字化建设闭环。 在智能运营覆盖的各个场景中,计算机视觉、自然语言处理、传统机器学习算法等人工智能技术充分应用。其中文字识别技术(OCR)作为计算机视觉的主要方向之一,其识别对象包括扫描合同、印章、卡证、表格与票据信息结构化,在业务办理、风险控制、内部数

    01

    基于OpenCV修复表格缺失的轮廓--如何识别和修复表格识别中的虚线

    通过扫描或照片对文档进行数字化处理时,错误的设置或不良的条件可能会影响图像质量。在识别的情况下,这可能导致表结构损坏。某些图标的处理结果可能只是有轻微的瑕疵,甚至只是一些小孔,但是无法将其识别为连贯的系统。有时在创建在单元格时,表的某些侧面可能也没有线的存在。表和单元格类型多种多样,因此通常所提出的代码可能并不适合所有情况。尽管如此,如果我们能对提取的表格进行少量修改,大部分程序仍然可以使用。大多数表格识别算法是基于表格的结构。由于没有完整的边线会使一些单元格无法被识别,导致不良的识别率,因此我们需要想办法修复这些丢失的线段。

    01

    基于OpenCV修复表格缺失的轮廓--如何识别和修复表格识别中的虚线

    通过扫描或照片对文档进行数字化处理时,错误的设置或不良的条件可能会影响图像质量。在识别的情况下,这可能导致表结构损坏。某些图标的处理结果可能只是有轻微的瑕疵,甚至只是一些小孔,但是无法将其识别为连贯的系统。有时在创建在单元格时,表的某些侧面可能也没有线的存在。表和单元格类型多种多样,因此通常所提出的代码可能并不适合所有情况。尽管如此,如果我们能对提取的表格进行少量修改,大部分程序仍然可以使用。大多数表格识别算法是基于表格的结构。由于没有完整的边线会使一些单元格无法被识别,导致不良的识别率,因此我们需要想办法修复这些丢失的线段。

    02
    领券