目录: 1 AlphaZero-Gomoku 2 OpenPose 3 Face Recognition 4 Magenta 5 YOLOv2 6 MUSE 7 Arnold 8 FoolNLTK 9 Gym 10 style2paints v2.0 1 AlphaZero-Gomoku 用Alpha元下五子棋 项目链接:https://github.com/junxiaosong/AlphaZero_Gomoku 这个项目使用Alpha元算法,通过自训练实现玩五子棋。由于五子棋相比围棋或国际象棋简单得多,
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 目录: AlphaZero-Gomoku OpenPose Face Rec
人脸识别是近两年计算机视觉领域创业热潮中的一个热门方向,DeepID是这股热潮中不可忽视的一种人脸算法。针对DeepID的研发心得,人脸识别应用的现状、难点与未来,深度学习的实践经验等问题,CSDN记者近日采访了DeepID人脸算法发明者孙祎。 孙祎先后就读于清华大学、香港中文大学,2013年在CVPR上发表了用深度学习做面部特征点检测最早的论文。随后陆续发表了四篇在人脸识别领域有影响力的论文(ICCV’13,CVPR’14,NIPS’14,CVPR’15),使深度学习方法的人脸识别准确率远远超过了人眼的准
人脸识别是近两年计算机视觉领域创业热潮中的一个热门方向,DeepID是这股热潮中不可忽视的一种人脸算法。针对DeepID的研发心得,人脸识别应用的现状、难点与未来,深度学习的实践经验等问题,CSDN记者近日采访了DeepID人脸算法发明者孙祎。 孙祎先后就读于清华大学、中国香港中文大学,2013年在CVPR上发表了用深度学习做面部特征点检测最早的论文。随后陆续发表了四篇在人脸识别领域有影响力的论文(ICCV’13,CVPR’14,NIPS’14,CVPR’15),使深度学习方法的人脸识别准确率远远超过
最近在对接公司一些新闻接口的时候,发现接口茫茫多:CMS接口、无线CMS接口、正文接口、列表接口……更令人捉急的是,由于新闻推送场景不同,每条新闻的配图尺寸也就不同,比如PC要求高清大图,而移动端就会根据屏幕尺寸要求各种尺寸的小图,一个接口也就要吐出好几个尺寸的图片供客户端使用。比如无线CMS的接口里就需要640330、150120、280*210……那么问题来了,难道每多一种尺寸就需要编辑裁一次图上传到CMS?
这几年人脸识别技术在国内发展飞速,给生活带了很多便利,这个大家应该都有体会。早几年进高铁站还比较麻烦,要先排长队,得让检票口的工作人员一个一个查看证件然后“啪”地戳章,才能进站。很多人应该都和我一样想过一个问题,那为什么不多设几个口呢?我还专门问了朋友,朋友说都知道排长队体验不太好,不过多开一个口,就要多雇几个人,不但要一直开工资,还要有保险等各类配套的保障类支出,用人成本很高,所以二者只能相互取平衡。
大公司在未来一定会将这些技术免费开源,这对于只做技术的公司来说将是一种致命性的打压。 2017年7月9日,由镁客网、振威集团联合主办的“3E‘硬纪元’AI+产业应用创新峰会”在北京国家会议中心盛大开幕。现场200位来自全球AI行业的顶级专家、知名创投机构、创业公司团队和知名媒体齐聚一堂,共谋AI+行业的创新应用,探讨AI的当下与未来。 来自电子科技大学人工智能研究中心的陈建文主任,在峰会期间进行了主题为“连接智能产业升级的演进”的主题演讲。他表示,当前国内有99%的创业项目都是非关键性应用,即技术没有特别高
AI科技评论按:21日,《麻省理工科技评论》发布全球十大突破性技术榜单,百度以人脸识别技术获得提名。百度深度学习实验室主任林元庆会后举行了一场媒体沟通会,详细阐述了百度在人工智能,特别是人脸识别方面的技术突破和应用落地,并透露了百度国家级人工智能实验室的部分计划。雷锋网对沟通会内容进行了整理。 百度人脸识别获评MIT科技评论十大突破性科技,林元庆面对媒体的开场演讲: 其实人脸识别在2016年还是非常突破性的,中国有很多公司,包括百度,也花了非常大的研发的力量和市场推广在人脸识别上面。2016年我们看到技术报
本文主要介绍OpenCV4.5.4中人脸识别模块的使用和简易人脸识别系统的搭建,供大家参考。
智能时代已悄然到来,"刷脸"逐渐成为了新的风潮。在人脸识别技术商业化应用领域不断扩张的趋势下,"刷脸"办事正愈发常见。人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
前段时间有同学在DotNetGuide技术社区交流群提问:.NET做人脸识别功能有什么好的解决方案推荐的吗?今天大姚给大家推荐2款.NET开源、免费、跨平台、使用简单的人脸识别库,希望可以帮助到有需要的同学。
之前的文章中,我们写过关于《Java 实现 AI人工智能技术 - 人脸识别》的文章,并且附带了源码(老版本:基于Spring、jdbc、jsp、json、https、mysql、tocmat等实现),有兴趣的同学,可以点击阅读。
这次版本升级,从版本号SeetaFace2 跳过 3 、4、 5直接升级到SeetaFace6,总之就是 666 吧~
机器之心原创 作者:高静宜 「身份验证是整个互联网金融的基础,要做到从实名到实人,生物识别在这里起到了很重要的作用。」蚂蚁金服生物识别技术负责人、全球核身平台资深专家陈继东告诉机器之心。生物识别技术的成熟、金融支付安全性与使用体验的更高要求,正推动互联网金融公司、商业银行对生物识别认证技术的开发与应用。2015 年 3 月,阿里巴巴集团执行主席马云在德国 CeBIT 展会开幕式上发布并演示了人脸识别支付认证技术,同年年末,蚂蚁金服「刷脸」认证在支付宝和网商银行正式上线。今年 2 月 21 日,蚂蚁金服「刷
人脸识别所面临的一个挑战就是你需要解决一次学习问题,这意味着在大多数人脸识别应用中,你需要通过单单一张图片或者单单一个人脸样例就能去识别这个人。
以上就是完成人脸识别所需的步骤,如果你想在这个基础上,做人脸比对或者身份证校验等拓展功能,可以借助用户的身份证、姓名等信息,再结合第三方的AI服务,比如腾讯云的人脸核身来完成,本质上底层数据支持来自公安的实名认证接口
Amazon locker是一款知名的产品,它植根于美国,可以通过人脸认证自动将包裹递送到正确的客户手中。
中兴智能视觉大数据报道:人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。人脸识别的应用集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。人脸识别在国内广为人知始于近几年,其实早在20世纪90年代人脸识别就已在美国、德国、日本等国家应用,作为新兴技术,人脸识别搭载“高科技”标签,广为产品厂商和用户喜爱。
开始课程之前,需要准备一台安卓系统的手机,手机中安装AidLux软件,一般手机的应用市场就有,本次课程需要使用为面向开发者的内测版本AidLux 1.4beta,下载链接如下:
当各路资本都蜂拥而至某一领域的时候,其也就结束了淘金的黄金时期,当前的人脸识别正处于这一阶段。
2016除夕夜,微信除了摇一摇抢红包,同时还带来了另外一个新玩法——红包照片,而据说很多人也都卖命晒出了珍藏多年的照片! 猴年除夕活动已经落下帷幕,回头来看红包照片这一套系统,对于客户端而言,区别于普通的朋友圈图片设计差异是否大?它是否复杂? 客户端都关注些什么?下面我从一个Android客户端开发者的角度出发,来谈谈我的看法。 首先从整体的角度来认识一下红包照片,这是红包照片的相关模块图: 从功能实现角度看,红包照片并不复杂。主要包含图中几个模块,基本就可以实现红包照片这个功能: 发表权限入口/
禁令是旧金山监事会(Board of Supervisors)今天刚刚通过的。监事会是一个专门监督旧金山政府的机构,有立法权,类似本地的议会,由旧金山每个区的民众选出一位监事会成员,代表民众来投票。
2001年,Paul Viola和Michael Jone开始了计算机视觉的革命,当时的人脸识别技术并不成熟,识别准确度较低,速度也很慢。直到提出了Viola-Jones人脸识别框架后,不仅成功率大大提高,而且还能实施进行人脸识别。
LFW人脸图像数据集是一个大型的人脸数据集,经常用于做人脸识别算法的衡量或比赛,其人脸图像来自网络,且在下载的图像包中要已经全部按照人名分别放在对应文件夹里了,这一点挺方便的。
安妮 发自 北京柏悦 量子位 出品 | 公众号 QbitAI 有点晚。 作为一家通用计算机视觉识别公司,中科视拓起步确实晚了点。 往前看看,有11年成立的Face++,12年成立的依图,14年成立的商汤。去年8月,当还是中科院人脸识别专业研究员的山世光宣布成立中科视拓的时候,引起了行业内一次轰动。 不到一个月时间,中科视拓就完成了线性资本领投、紫牛基金、明势资本和地平线跟投的数千万融资。 一年后。昨天,山世光在北京柏悦酒店宣布,中科视拓的pre-A轮融资已经完成。这次融资由安赐资本领投、线性资本跟投,又是一
AI科技评论按:近日,《最强大脑》第四季落下帷幕,凭借在人脸识别和图像检索方面的出色表现,百度人工智能机器人小度荣获“脑王” 称号。4月11日,百度以此为主题在北京举办了“第五届百度技术开放日”的活动。百度研究院院长、深度学习技术及应用国家工程实验室主任林元庆做了“最强大脑背后的技术”主题演讲,详细解释了小度在“脑王”对决中的台前幕后,涉及图像检索、声纹识别、人脸识别等方向。 随后林元庆还介绍了百度将在人工智能方面着重发力的方向及下一步的计划,AI科技评论总结如下: 将图像识别技术做到极致 完善声纹
雷锋网按:本文根据涂图CTO在七牛云架构师沙龙上的演讲整理,本篇主要谈谈人脸识别技术的原理与具体实践的一些问题,作者授权发布雷锋网。 在上篇文章的最后,我们提到了美颜2.0最关键的技术——人脸识别。这是项复杂但又非常热门的技术,我们将在这篇文章中聊一聊图像识别技术。 一、如何让机器看懂世界? 这里我们来简单聊聊机器学习与深度学习。 近段时间,机器学习、深度学习的概念非常火,尤其是今年 AlphaGo 击败了韩国棋手这件事,引起了世界的轰动。机器学习和深度学习这两个概念,比较容易混淆,以至于很多媒体在写报道时
但那时技术还不成熟,如果只抠出脸部区域的大小,一旦碰到歪脸抬头的姿势,就可能只拿到半张脸……
2018年,是人工智能推动行业变革的一年,而2019年AI的核心价值,在于提升场景应用体验。
这是人脸识别系列的第5篇文章,前4篇文章可以在公众号的人脸识别栏里找到,这篇文章主要是解析CVPR 2014年的经典人脸识别论文DeepID1算法。论文的地址如下:http://mmlab.ie.cuhk.edu.hk/pdf/YiSun_CVPR14.pdf 。
本文介绍了人脸识别技术的起源、发展、技术原理、应用以及面临的挑战和未来的发展趋势。人脸识别技术已经广泛应用于各个领域,如安防监控、人员考勤、金融支付等场景。随着技术的不断发展,人脸识别技术将越来越智能化和精准化,同时也将面临一系列的挑战和问题。未来,人脸识别技术将逐渐与其他技术相结合,实现更广泛的应用和发展。
做人脸识别用 Python 比较多,但是今天碰上一个另类,他就跟别人不一样,就不用 Python 用 Go。其实不管是 P 还是 G,能认出脸来就是好样的。
2016年是人工智能发展的第60周年,人工智能已经走了很长一段路,随着AlphaGo的辉煌战绩的出现,又再次引爆了人工智能在各个领域的发展。回顾计算机视觉发展之路,才能让我们踩着历史的积淀,顺应发展的大潮,去探索未来。
“在未来30年, 人工智能将取代目前世界上50%的工作。” ——莱斯大学 计算机科学教授 Moshe Vardi 不管未来怎么样,我觉得提高设计师的效率是眼前最容易做到的事情。 设计师打交道最多是图像
李凯周,天津大学计算机科学与技术专业硕士。现担任中科视拓研发部产品总监兼研发总监,负责研发算法部署、SDK化和数据分析管理工作,主导SeetaFace2的算法发布。
本文介绍了人脸识别和OCR识别技术的原理、应用和评测方法,并探讨了与腾讯云合作的政企项目应用情况。
腾讯AI Lab计算机视觉中心人脸&OCR团队是2016年11月底开始组建和开展工作,我们以研发业界领先的算法为目标驱动,逐步克服人手不足、训练数据不足等困难,不断夯实基础,做既有原创性又能落地应用的国际前沿研究。在上一期(腾讯AI Lab 计算机视觉中心人脸&OCR团队近期成果介绍(1))中已经介绍了我们团队的一些研究成果,近期,我们团队有一些新的成果再和大家进一步分享。 1 人脸研究进展 人脸研究的两大关键任务是人脸检测与人脸识别。在上一期中,我们主要介绍了我们团队在人脸检测的两个国际权威评测平台(WI
【编者按】微软亚洲研究院在人脸识别领域已经耕耘了近20年时间,从最早的子空间方法,到后来的局部描述子方法,再到现在的深度学习方法,历经了所有人脸识别技术的主流研究方法。微软亚洲研究院视觉计算组首席研究员孙剑博士撰写了本文,基于近期的两项人脸识别应用,深入浅出的介绍了这项应用背后的深度学习方法、人脸识别基础环节等内容。 近期,微软发布了一款有趣的应用 ——“微软我们”(TwinsOrNot.net),只需任意上传两张人物照片,就可以知道他们长的有多像,比如,测试你是否和某个明星长得很像,或者夫妻/男女朋友是不
【新智元导读】 近日, Cell 的一项研究在人脸识别领域引起轰动,研究揭示了灵长类动物人脸识别的具体神经元活动过程——对脸部的识别是由大脑中 200 多个不同神经元共同编码完成的,这一发现推翻了此前人脸由特定细胞识别的假说。本文认为,这一发现,可能会破解长久以来计算机视觉领域祖母细胞论与还原论之争。为什么计算机人脸识别会超越人类,我们找到了5个优势。 作者吴春鹏:杜克大学电子与计算机工程系在读博士生,前富士通研发中心研究员,曾在美光、LG北美实验室等公司实习。研究方向是机器学习,计算机视觉和模式识别。 灵
本文介绍了单样本学习,并以孪生神经网络在人脸识别中的应用为例进行说明。单样本学习旨在通过少量样本实现高效学习,而孪生神经网络可以用于人脸识别任务,通过比较两张图片的编码距离来识别是否是同一个人。该文还介绍了如何通过三重损失函数来训练模型,并说明了如何选择用于训练模型的图片。
这一年来,有数场高峰论坛吸引了众人的目光,从大连的夏季达沃斯论坛到天津的世界智能大会再到北京的软博会,每一个都是国际型、重量级的高峰论坛。但有趣的是,在这三个论坛中,人工智能(AI)都成为了主角。
这两年人工智能项目很火,之前听入职的应届毕业生说:他们的很多朋友和同学都去培训人工智能了。但是到了培训机构真的能够把一个非计算机专业的人培训出来做人工智能吗?我想说:不能。做人工智能项目需要的是算法,需要研究大量的数据,进行建模,推到算法模型才行。根本不是培训机构三四个月就能够培训出来的。
当前生物特征识别能力提供2D人脸识别、3D人脸识别两种人脸识别能力,设备具备哪种识别能力,取决于设备的硬件能力和技术实现。3D人脸识别技术识别率、防伪能力都优于2D人脸识别技术,但具有3D人脸能力(比如3D结构光、3D TOF等)的设备才可以使用3D人脸识别技术。
4月13日结束的计算机视觉沙龙圆满落幕。本期沙龙从构建图像识别系统的方法切入,讲述腾讯云人脸识别、文字识别、人脸核身等技术能力原理与行业应用,为各位开发者带来了一场人工智能领域的技术开拓实践之旅。下面是范锦老师关于腾讯云人脸识别系统在传统行业的应用与落地的总结。
人脸关键点检测是一个非常核心的算法业务,应用广泛。比如我们常用的换脸、换妆、人脸特效等2C应用中的功能,都需要先进行人脸关键点的检测,然后再进行其他的算法业务处理;在一些2B的业务场景中也都有涉及,如疲劳驾驶中对人脸姿态的估计,人脸识别前的人脸对齐等。
选自towardsdatascience 作者:Firdaouss Doukkali 机器之心编译 参与:Nurhachu Null、刘晓坤 这篇文章简要介绍单样本学习,以孪生神经网络(Siamese
作者:汪铖杰 首发于 腾讯云技术社区 量子位 已获授权编辑发布 优图实验室研究人脸技术多年,不仅在技术方面有很好的积累,而且在公司内外的业务中有众多应用。笔者作为优图实验室人脸研究组的一员,在与产品、商务、工程开发同事交流过程中发现:不管是“从图中找到人脸的位置”,或是“识别出这个人脸对应的身份”,亦或是其他,大家都会把这些不同的人脸技术统称为“人脸识别技术”。 因此,笔者整理了一些常见人脸技术的基本概念,主要用于帮助非基础研究同事对人脸相关技术有一个更深入的了解,方便后续的交流与合作。 人脸技术基本概念介
数字经济浪潮下,人工智能作为技术驱动力量高速运行,迎来了黄金时代,各路资本纷至沓来。华为、百度、腾讯、阿里等科技巨头投入重金拓展AI边界,人工智能企业的IPO步伐也在提速,其中科大讯飞、商汤、云从等企业已成功上市。对于计算机视觉、机器人、AI教育、芯片研究、自动驾驶等主流细分领域或应用场景,资本市场尤为青睐。
领取专属 10元无门槛券
手把手带您无忧上云