由于LeetCode上的算法题很多涉及到一些基础的数据结构,为了更好的理解后续更新的一些复杂题目的动画,推出一个新系列 -----《图解数据结构》,主要使用动画来描述常见的数据结构和算法。本系列包括十大排序、堆、队列、树、并查集、图等等大概几十篇。
在计算机科学中,算法分析是非常关键的部分。找到解决问题的最有效算法非常重要。可能会有许多算法能够解决问题,但这里的挑战是选择最有效的算法。现在关键是假如我们有一套不同的算法,应该如何识别最有效的算法呢?在这里算法的空间和时间复杂度的概念出现了。空间和时间复杂度是算法的测量尺度。我们根据它们的空间(内存量)和时间复杂度(操作次数)来对算法进行比较。
《Elasticsearch 向量搜索的工程化实战》文章一经发出,收到很多留言。读者对向量检索和普通检索的区别充满了好奇,所以就有了今天的文章。
这篇文章是基于2014年2月3日的innodb_ruby 0.8.8版本。 在《学习InnoDB:核心之旅》中,我介绍了innodb_diagrams项目来记录InnoDB的内部,它提供了这篇文章中用到的图表。稍后,在对innodb_ruby的快速介绍中,我介绍了innodb_space命令行工具的安装和一些快速演示。 InnoDB索引页的物理结构在《InnoDB索引页的物理结构》一文中进行了描述,逻辑结构在《InnoDB的B+树索引结构》中进行了描述,行记录的物理结构在《InnoDB的行记录的物理结构》一文中进行了描述。现在我们将详细对“page directory”结构进行探讨,这个结构在之前已经出现过几次了,但还没有详细说明。 在这篇文章中,只考虑了紧凑行格式(用于Barracuda 表格式)。
如果你是一名数据科学家,你很有可能使用Python或R编程。但是有一个叫Julia的新成员承诺在不影响数据科学家编写代码和与数据交互的情况下拥有c一样的性能。
type() #查看类型 dir() help() len() open() #文本文件的输入输出 range() enumerate() zip() #循环相关 iter() #循环对象 map() filter() reduce() #函数对象 abs(-2) #取绝对值 round(2.3) #取整 pow(3,2) #乘方 cmp(3.1, 3.2) #比较大小 divmod(9, 7) #返回除法的结果和余数 max([2, 4, 6, 8]) #求最大值 min([1, 2, -1, -2]) #求最小值 sum([-1, 1, 5, 7]) #求和 int(“10”) #字符转为整数 float(4) #转为浮点数 long(“17”) # 转为长整数 str(3.5) #转为字符串 complex(2, 5) #返回复数2 + 5i ord(“A”) #A对应的ascii码 chr(65) #ascii码对应的字符 unichr(65) #数值65对应的unicode字符 bool(0) #转换为相应的真假值,0相当于False btw:”空” 值相当于False:[],(),{},0,None,0.0 all([True, 2, “wow!”]) #是否所有元素相当于True,全为True则为True any([0, “”, False, [], None]) #是否有元素相当于True sorted([1, 7, 4]) #序列升序排序 reversed([1, 5, 3]) #序列降序排序 list((1, 2, 3)) #tuple转换为表list tuple([4, 5, 4]) #list转换为tuple dict(a=3, b=”hi”, c=[1,2,3]) #构建字典 d = dict(a=3, b=”hi”, c=[1,2,3]) #d则为字典,字典的引用方式d[“a”]的值为3 input(‘input something’) #等待用户输入 globals() #返回全局变量名,函数名 locals() #返回局部命名空间
本文整理自https://fastexcel.wordpress.com/,有兴趣的朋友可以研究一下。
大数据文摘授权转载自数据派THU 作者:Leonie Monigatti 翻译:欧阳锦 校对:王可汗 你如何在英语词典中查到一个词?我知道你不会按照这种方法做:从第一页开始,翻阅每一个词,直到找到你要找的那个词——当然,除非你的词是 "土豚"(aardvark)。但如果你要找的词是 "动物园"(zoo),这种方法会花很长时间。 你会如何在英语词典中查找一个词呢? 一个更快的方法是在中间打开,然后决定是在字典的前半部分还是后半部分继续搜索。 这种方法是对二分搜索算法的一种宽泛描述,这种算法在一个排序的元素列表
本文和大家聊聊搜索算法,计算机解决问题的抽象流程是,先搜索,或完全搜索后得到答案,或边搜索边找答案。所以,对给定的数据集进行搜索是解决问题的前置条件。不搜索,无问题。
学会了Python基础知识,想进阶一下,那就来点算法吧!毕竟编程语言只是工具,结构算法才是灵魂。
几位印度小哥在 GitHub 上建了一个各种 Python 算法的新手入门大全。从原理到代码,全都给你交代清楚了。为了让新手更加直观的理解,有的部分还配了动图。
学会了 Python 基础知识,想进阶一下,那就来点算法吧!毕竟编程语言只是工具,结构算法才是灵魂。
你如何在英语词典中查到一个词?我知道你不会按照这种方法做:从第一页开始,翻阅每一个词,直到找到你要找的那个词——当然,除非你的词是 "土豚"(aardvark)。但如果你要找的词是 "动物园"(zoo),这种方法会花很长时间。
在计算机科学和软件工程领域,数据结构和算法是构建高效、可伸缩和可维护软件的关键组成部分。无论你是一名初学者还是经验丰富的开发者,理解和熟练应用数据结构和算法都是非常重要的。本文将深入探讨数据结构和算法的重要性,并提供一些示例代码来演示如何编写更高效的代码。
你好程序员,我们大多数人都害怕算法,并且从未开始学习它。但我们不应该害怕它。算法只是解决问题的步骤。
线性搜索是一种简单的搜索算法,逐个检查列表中的每个元素,直到找到目标元素或遍历完整个列表。
算法是计算机科学中的基础概念之一,它是解决问题的一系列步骤和规则。无论是编写一个简单的程序还是开发一个复杂的应用,算法都是不可或缺的。本篇博客将为你介绍算法的概念以及它在计算机科学中的重要性,并通过 Python 语言来演示算法的实际应用。
Java 中常见的搜索算法包括线性搜索和二分搜索。线性搜索是一种简单的搜索算法,但其时间复杂度较高,适用于小数据量的情况;而二分搜索则能在有序数组中较快地查找目标元素。
数据结构和算法是计算机科学中最重要的概念之一。如果您不熟悉计算机科学或编程,本文将为您提供有关数据结构和算法的概述。这也是Landscape系列的第二集。
其他的像是“magnificently,” “gleamed,” “intimidated,” “tentatively,” 和“reigned,”这些辅助奠定段落基调的词也是很好的选择。它们表示情绪,这对数据科学家来说可能是非常有价值的信息。 所以,理想情况下,我们会倾向突出对有意义单词的表示。
大家好,今天我要开始一个名为“每个程序员都应该知道的算法”的系列。在本系列中,我们将研究各种算法,例如搜索,排序,图形,数组等。
01 哨兵 先看下维基百科对其定义: In computer programming, a sentinel value (also referred to as a flag value, trip value, rogue value, signal value, or dummy data) is a special value in the context of an algorithm which uses its presence as a condition of termination,
You are given a sequence of n integers S and a sequence of different q integers T. Write a program which outputs C, the number of integers in T which are also in the set S.
我们通过两组添加元素,三组删除元素,一组查找元素的操作来理解二叉查找树的属性性质。
数据结构和算法是计算机科学的两个核心概念,它们在计算机程序的设计和性能优化中起着至关重要的作用。理解数据结构和算法如何融合到实际应用中,可以帮助开发者编写更高效、更可维护的代码。本文将深入探讨数据结构和算法的奥秘,介绍它们在实际应用中的应用,并提供代码示例以帮助读者更好地理解这一主题。
来源: science; nautil 作者:弗格森 【新智元导读】 Science 近日以《面向一种基础计算问题的神经网络算法》为题,介绍了一项十分前沿的研究:通过果蝇嗅觉回路,发现了一种一直被人们忽视的搜索算法。通过实验,作者证明,这种算法比起传统的搜索算法,性能提升30%-50%。该研究提供了新的搜索算法进化方式的思考。搜索引擎巨头,不管是国外的谷歌还是国内的百度,或者任何互联网和AI公司,搜索都是一个必须要解决的问题。随着数据库信息和数据来源的爆炸式增长,传统的搜索方法,比如线性搜索,需要突破。 S
在算法和数据结构中,搜索是一种常见的操作,用于查找特定元素在数据集合中的位置。线性搜索算法是最简单的搜索算法之一,在一组数据中逐一比较查找目标元素。本篇博客将介绍线性搜索算法的两种实现方式:顺序搜索和二分搜索,并通过实例代码演示它们的应用。
https://blog.csdn.net/u011239443/article/details/80076720 论文地址:https://arxiv.org/pdf/1607.01759v2.pdf
答:要保证能遍历到数组的第一个元素和最后一个元素。因为初始化 h 的赋值是 len(nums) - 1,即最后一个元素的索引,而不是 len(nums)。
图神经网络(GNN)是机器学习中最热门的领域之一,在过去短短数月内就有多篇优秀的综述论文。但数据科学家 Matt Ranger 对 GNN 却并不感冒。他认为这方面的研究会取得进展,但其他研究方向或许更重要。
这个repo有近23个大牛一起维护的,领头的是一个印度工程师!印度我好几年前出差还是去过,当时去的是号称是印度的“硅谷”班加罗尔,确实软件行业非常发达。来看一下这个Github上囊括了几大主流的编程语言:
近日,在AIGC的广阔世界里出现了一个火热的图像编辑方法—即通过在给定图像上通过把语义内容从原位置(handle point)拖动到目标位置(target point)的方式进行精细的定制化编辑操作。
作者:Ketan Doshi 翻译:欧阳锦校对:和中华 本文约3800字,建议阅读10分钟本文通过可视化的方式清晰地展示了Transformer的工作本质,并从本质中探索了它具有优良表现的原因。
这一篇文章主要是记录下自己阅读《Convolutional Neural Networks for Sentence Classification》这篇文章思路的一个整理。这篇文章也可以算是CNN用于文本分类的开山之作了,尽管第一个使用CNN进行文本分类的不是Yoon Kim,但是Kim在这篇文章里提出来不少的方法,并且调参的过程也很详细,这些是我们应该学习的。
Code:https://github.com/LPengYang/FreeDrag
【新智元导读】解决深度学习问题时,使用迁移学习能够很好地减少所需的训练数据量。但是,使用这种方法需要更多的专业知识,比如判断如何调试问题、将哪一层的输出作为输入。本文首先通过一个简单示例(对影评的情感倾向做预测),手把手教你使用迁移学习。然后,文章介绍了一个有用的机器学习 API(也即作者本人公司的产品)——NanoNets,它包含一组训练含有数百万个参数的预训练模型,上传你自己的数据(或搜索网络数据),它会选择适用于你任务的最佳模型,简化你使用迁移学习训练模型的过程。 近来深度学习大受欢迎,在诸如语言翻译
除并发应用,Queue在Java SE5中仅有两个实现 LinkedList和PriorityQueue,差异在于排序行为,而不是性能。
在日常编程中,我们经常会遇到数组去重的问题。今天,我们就来聊聊如何用JavaScript来优雅地解决这个问题。
github地址,阅读原文可查看仓库代码: https://github.com/trekhleb/javascript-algorithms/
数据降维的重要性就不必说了,而用NN(神经网络)来对数据进行大量的降维是从2006开始的,这起源于2006年science上的一篇文章:reducing the dimensionality of data with neural networks,作者就是鼎鼎有名的Hinton,这篇文章也标志着deep learning进入火热的时代。 花了点时间读了下这篇文章,下面是一点笔记: 多层感知机其实在上世纪已经被提出来了,但是为什么它没有得到广泛应用呢?其原因在于对多层非线性网络进行权值优化时很难得到
点云处理过程中可能会遇到寻找最临近点的问题,常用的解决方案就是用空间换效率。例如建立kd-tree等树状结构来代替遍历。
来源:Deephub Imba本文共2700字,建议阅读5分钟本文能让你对Transformer的整体架构有所了解。 多年来,深度学习一直在不断发展。深度学习实践高度强调使用大量参数来提取有关我们正在处理的数据集的有用信息。通过拥有大量参数,我们可以更容易地分类/检测某些东西,因为我们有更多的可以清楚地识别的数据。 目前为止深度学习中,特别是在自然语言处理领域的一个显着里程碑是语言模型的引入,它极大地提高了执行各种 NLP 任务的准确性和效率。 seq2seq模型是一种基于编码器-解码器机制的模型,它接收输
原文标题:AnIntuitive Introduction to Generative Adversarial Networks 作者:KeshavDhandhania、ArashDelijani 翻译:申利彬 校对:和中华 本文以图像生成问题引出GAN模型,并介绍了GAN模型的数学原理和训练过程,最后提供了丰富的GAN学习资料。 本文讨论生成对抗网络,简称GANs。在生成任务或更广泛的无监督学习中,GANs是为数不多在此领域表现较好的机器学习技术之一。特别是他们在图像生成相关任务上拥有出色表现。深度学习
当数据保存在磁盘类存储介质上时,它是作为数据块存放。这些数据块是被当作一个整体来访问的,这样可以保证操作的原子性。硬盘数据块存储结构类似于链表,都包含数据部分,以及一个指向下一个节点(或数据块)的指针,不需要连续存储。 记录集只能在某个关键字段上进行排序,所以如果需要在一个无序字段上进行搜索,就要执行一个线性搜索(Linear Search)的过程,平均需要访问N/2的数据块,N是表所占据的数据块数目。如果这个字段是一个非主键字段(也就是说,不包含唯一的访问入口),那么需要在N个数据块上搜索整个表格空间。 但是对于一个有序字段,可以运用二分查找(Binary Search),这样只要访问log2 (N)的数据块。这就是为什么性能能得到本质上的提高。
领取专属 10元无门槛券
手把手带您无忧上云