当我开始走上数据科学的职业道路,我经常面临的问题是为我的具体问题选择最合适的算法。如果你像我一样,当你打开一些关于机器学习算法的文章,你会看到许多详细的描述。矛盾的是,他们并没有减轻选择的压力。
AI 科技大本营按:本文节选自微软亚洲研究院机器学习研究团队刘铁岩、陈薇、王太峰、高飞合著的《分布式机器学习:算法、理论与实践》一书。为了让大家更好地理解分布式机器学习,AI科技大本营联合华章科技特别邀请到了本书的作者之一——微软亚洲研究院副院长刘铁岩老师进行在线公开课分享,详情请见文末信息,还有福利哦~~
的基础上额外加入一个偏置项b,不过只要把x扩展出一维常数分量,就可以把带偏置项的线性函数归并到
No.19 CNN中,conv layer、ReLu layer、Pooling layer、Fully connected layer的区别?
【导读】我们在上一节的内容中已经为大家介绍了台大李宏毅老师的机器学习课程的Recurrent Neural Network。这一节将主要针对讨论Ensemble进行讨论。本文内容主要针对机器学习中Ensemble的bagging、boosting以及stacking进行详细介绍,话不多说,让我们一起学习这些内容吧。 春节充电系列:李宏毅2017机器学习课程学习笔记21之结构化学习(Structured learning)介绍篇 春节充电系列:李宏毅2017机器学习课程学习笔记22之结构化学习(Structu
1、大纲:https://space.bilibili.com/1567748478/channel/collectiondetail?sid=28144 2、 3、 4、在数据分析、人工智能中不同岗
在众多机器学习模型中,我们如何在各种实际情况下做出恰当的选择呢?本文我从如下几个方面系统地分析下~ 有帮助的话点个赞哦。
Stock Prediction Models - Gathers machine learning and deep learning models for Stock forecasting, included trading bots and simulations
文本分类作为自然语言处理任务之一,被广泛应用于解决各种商业领域的问题。文本分类的目的是将 文本/文档 自动地归类为一种或多种预定义的类别。常见的文本分类应用如下:
翻译 | 王柯凝 出品|人工智能头条(公众号ID:AI_Thinker) 【导读】今年年初以来,作者一直在印度找数据科学、机器学习以及深度学习领域的工作。在找工作的这三十四天里,他面试了8到10家公司,其中也包括初创公司、基于服务的公司以及基于产品的公司。作者希望他的面试经验能够为求职者提供一些有用的信息,因而撰写了此文。希望你读后能够有所收获! 首先自我介绍一下: 我在机器学习(语音分析、文本分析和图像分析领域应用)领域有4年以上的从业经验。总的来说,我认为这个领域的大多数工作职位主要包括文本分析(自然
很多机器学习问题都可以放在一个统一的框架下讨论,这样大家在理解各种模型时就是相互联系的。
1. 论文:Gradient Boosting Machine: A Survey
1、Briefings in Bioinformatics | SGANRDA - 预测circRNA与疾病关联的半监督生成对抗网络
前面的内容里我们介绍了循环神经网络的基本结构,这一小节里我们介绍几种更常用的循环神经网络的结构。
最近投了一堆机器学习/深度学习/计算机视觉方向的公司,分享一下自己的经验,希望对大家有帮助。
浓缩就是精华。想要把书写厚很容易,想要写薄却非常难。现在已经有这么多经典的机器学习算法,如果能抓住它们的核心本质,无论是对于理解还是对于记忆都有很大的帮助,还能让你更可能通过面试。在本文中,SIGAI将用一句话来总结每种典型的机器学习算法,帮你抓住问题的本质,强化理解和记忆。下面我们就开始了。
前馈神经网络不考虑数据之间的关联性,网络的输出只和当前时刻网络的输入相关。然而在解决很多实际问题的时候我们发现,现实问题中存在着很多序列型的数据,例如文本、语音以及视频等。这些序列型的数据往往都是具有时序上的关联性的,既某一时刻网络的输出除了与当前时刻的输入相关之外,还与之前某一时刻或某几个时刻的输出相关。而前馈神经网络并不能处理好这种关联性,因为它没有记忆能力,所以前面时刻的输出不能传递到后面的时刻。
前言: 前馈神经网络的输入和输出的维数都是固定的,不能任意改变。当处理序列数据时,前馈神经网络就无能力为了。因为序列数据是变长的。为了使得前馈神经网络能处理变长的序列数据,一种方法是使用延时神经网络(Time-Delay Neural Networks,TDNN)[Waibel et al., 1989]。 循环神经网络(recurrent neural network, RNN),也叫递归神经网络。这里为了区别另外一种递归神经网络(Recursiva neural network),我们称之为循环神经网络
目前循环神经网络已经被应用在了很多领域,诸如语音识别(ASR)、语音合成(TTS)、聊天机器人、机器翻译等,近两年在自然语言处理的分词、词性标注等工作的研究中,也不乏循环神经网络的身影。在本节中,我们将介绍几个较为典型的循环神经网络的应用,以此来了解循环神经网络是如何与我们实际的应用场景所结合。
前面我们介绍的全连接神经网络以及卷积神经网络都只能单独处理一个个输入,并且前一个输入和后一个输入往往是没有直接联系。但是,在某些情况下我们需要很好地处理序列信息,即前一个输入与后一个输入是有关系的。比如我们理解一句话的时候,往往需要联系前后的句子才能得到这句话表达的准确含义。序列问题有很多,例如语音对话、文本理解以及视频/音频分析等。今天老shi将给大家介绍深度学习中另外一种非常重要的神经网络类型——循环神经网络RNN,它最擅长处理序列问题!
深度学习是一种新兴的技术,已经在许多领域中得到广泛的应用,如计算机视觉、自然语言处理、语音识别等。在深度学习中,算法是实现任务的核心,因此深度学习必备算法的学习和理解是非常重要的。
编写|PaddlePaddle 排版|wangp 本教程将指导你如何在 PaddlePaddle 中配置循环神经网络(RNN)。本教程中,您将了解如何: 配置循环神经网络架构 使用学习完成的循环神经网络模型生成序列 我们将使用 vanilla 循环神经网络和 sequence to sequence 模型来指导你完成这些步骤。sequence to sequence 模型的代码可以在 book/08.machine_translation(链接:https://github.com/PaddlePaddle
神经网络学习笔记-02-循环神经网络 本文是根据WildML的Recurrent Neural Networks Tutorial写的学习笔记。 循环神经网络 循环神经网络适用于处理序列化信息,比如:语言翻译,语音识别等。 如果,我们要实现一个翻译功能。首先需要理解原句中每个单词的含义。 这就需要根据上下文来理解。 假如:原句中的每个单词,以此对应神经网络中一个隐藏层。 在传统的神经网络框架中,隐藏层直接传递的是一个矢量Out。 这个Out矢量是原句当前每个词的一个输出,比如:含义等等。 那么,如
时间序列是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列,其中隐藏着一些过去与未来的关系。时间序列分析试图通过研究过去来预测未来。
这里红色部分是输入,比如说图像;绿色部分是网络部分,比如说卷积部分和全连接部分;蓝色部分是输出,比如说最终得到的分类概率。这样的网络结构很适合做图像的分类,图像的检测,这种数据都是固定的数据。如果是变长的数据,比如说文本,它的长度是不一定的,这个时候我们该怎么做呢?
不论是各处霸榜的谷歌BERT、OpenAI最近的强大NLP模型GPT-2,还是DeepMind击败星际2顶尖职业玩家的AlphaStar,背后都有 Transformer的身影。
循环神经网络的来源是为了刻画一个序列当前的输出与之前信息的关系。从网络结构上,循环神经网络会记忆之前的信息,并利用之前的信息影响后面结点的输出。即:循环神经网络的隐藏层之间的结点是有连接的,隐藏层的输入不仅包括输入层的输出,还包括上一时刻隐藏层的输出。其中双向循环神经网络(Bidirectional RNN, Bi-RNN)和长短期记忆网络(Long Short-Term Memory networks,LSTM)是常见的循环神经网络 。
之前介绍的全连接神经网络和卷积神经网络的模型中,网络结构都是从输入层到各隐藏层再到输出层,层与层之间是全连接(或者部分连接)的,但每层之间的节点是无连接的。
门控循环神经网络在简单循环神经网络的基础上对网络的结构做了调整,加入了门控机制,用来控制神经网络中信息的传递。门控机制可以用来控制记忆单元中的信息有多少需要保留,有多少需要丢弃,新的状态信息又有多少需要保存到记忆单元中等。这使得门控循环神经网络可以学习跨度相对较长的依赖关系,而不会出现梯度消失和梯度爆炸的问题。如果从数学的角度来理解,一般结构的循环神经网络中,网络的状态
这是个深度学习的时代,传统的机器学习算法仿佛已经失去了往日的光彩,你能随处听到卷积神经网络、循环神经网络以及其他各种net,偶尔听到的机器学习算法也是支持向量机,逻辑回归。今天给大家介绍一个自出生便统治数据科学界的王者——XGBoost算法,往期文章中我们分析过该算法的基本原理,本文让我们来看一下为什么XGBoost如此强大。
循环神经网络(Recurrent Neural Network,RNN)是一种能够处理序列数据的神经网络模型,常用于自然语言处理、时间序列分析等任务。本教程将介绍如何使用Python和PyTorch库实现一个简单的循环神经网络,并演示如何在一个简单的时间序列预测任务中使用该模型。
导 读 Google Tensorflow框架的Contributor。在计算机视觉领域有深厚的工业经验,带领团队开发的“花伴侣”植物识别App,上线数月即在0推广的情况下达到百万用户,并获得阿里巴巴
一、神经网络基础和前馈神经网络 1、神经网络中的激活函数:对比ReLU与Sigmoid、Tanh的优缺点?ReLU有哪些变种? 2、神经网络结构哪几种?各自都有什么特点? 3、前馈神经网络叫做多层感知机是否合适? 4、前馈神经网络怎么划分层? 5、如何理解通用近似定理? 6、怎么理解前馈神经网络中的反向传播?具体计算流程是怎样的? 7、卷积神经网络哪些部分构成?各部分作用分别是什么? 8、在深度学习中,网络层数增多会伴随哪些问题,怎么解决?为什么要采取残差网络ResNet? 二、循环神经网络 1、什么是循环神经网络?循环神经网络的基本结构是怎样的? 2、循环神经网络RNN常见的几种设计模式是怎样的? 3、循环神经网络RNN怎样进行参数学习? 4、循环神经网络RNN长期依赖问题产生的原因是怎样的? 5、RNN中为什么要采用tanh而不是ReLu作为激活函数?为什么普通的前馈网络或 CNN 中采取ReLU不会出现问题? 6、循环神经网络RNN怎么解决长期依赖问题?LSTM的结构是怎样的? 7、怎么理解“长短时记忆单元”?RNN中的隐状态
【导读】复旦大学副教授、博士生导师、开源自然语言处理工具FudanNLP的主要开发者邱锡鹏(http://nlp.fudan.edu.cn/xpqiu/)老师撰写的《神经网络与深度学习》书册,是国内为数不多的深度学习中文基础教程之一,每一章都是干货,非常精炼。邱老师在今年中国中文信息学会《前沿技术讲习班》做了题为《深度学习基础》的精彩报告,报告非常精彩,深入浅出地介绍了神经网络与深度学习的一系列相关知识,基本上围绕着邱老师的《神经网络与深度学习》一书进行讲解。专知希望把如此精华知识资料分发给更多AI从业者,
作者 | 智亮 Google Tensorflow框架的Contributor。在计算机视觉领域有深厚的工业经验,带领团队开发的“花伴侣”植物识别App,上线数月即在0推广的情况下达到百万用户,并获得阿里巴巴2017云栖大会API Solution大赛一等奖,团队受邀成为腾讯微信公开课北京站九位演讲嘉宾之一。 01 每一波浪潮的到来,都意味一片无人占领的蓝海,也意味着众多新成长起来的巨头,还意味着什么?大量的技术人员需求,供不应求的开发市场,以及从业者的高薪与众多的机会。 我们最常做的事情是目送着上一
循环神经网络是一种具有记忆功能的神经网络,适合序列数据的建模。它在语音识别、自然语言处理等领域取得了成功。是除卷积神经网络之外深度学习中最常用的一种网络结构。在本文中,SIGAI将和大家一起回顾循环神经网络的发展历程与在各个领域的应用。
人类不会每听到一个句子就对语言进行重新理解。看到一篇文章时,我们会根据之前对这些词的理解来了解背景。我们将其定义为记忆力。
本文作者:智亮 Google Tensorflow框架的Contributor。在计算机视觉领域有深厚的工业经验,带领团队开发的“花伴侣”植物识别App,上线数月即在0推广的情况下达到百万用户,并
原文标题:Iterative Machine Learning: A step towards Model Accuracy 原文作者:Amarabha Benerjee
距离加拿大教授 Gautam Kamath 上一次在 B 站上传视频,已经过去整整一年了。
机器之心报道 机器之心编辑部 在机器之心周二发布的文章《吴恩达宣布启动 AI Fund:1.75 亿美金进军 AI 创投》中,读者纷纷留言 deeplearning.ai 的第五课什么时候开始。终于,大家翘首期盼的课程今天开课了,同时也意味着该系列课程要结课了。自去年 8 月发布以来,吴恩达创业的第一个项目「深度学习教育课程」终于完整地呈现在人们的眼前。 课程链接:https://www.coursera.org/learn/nlp-sequence-models 和此前四门课程一样,新的课程仍将由吴恩达本
这是《机器学习-原理、算法与应用》这是机器学习与深度学习习题的第二部分,为《机器学习-原理,算法与应用》一书编写,二者配合使用。习题集的绝大部分题目都可以在此书中找到答案。同时也可以用作高校相关专业的机器学习,深度学习课程习题集。后续我们将给出最后一部分,以及整个习题集的完整答案。
这一份视频教程中,我会用简明的例子和手绘图,为你讲解循环神经网络(Recurrent Neural Network, RNN)的原理和使用方法。
我们有一段数字序列,我们训练一个神经网络,使得该模型能通过任意连在一起的两个数,判断出第三个数
卷积神经网络属于前面介绍的前馈神经网络之一,它对于图形图像的处理有着独特的效果,在结构上至少包括卷积层和池化层。卷积神经网络是最近几年不断发展的深度学习网络,并广泛被学术界重视和在企业中应用,代表性的卷积神经网络包括LeNet-5、VGG、AlexNet 等。
PaddlePaddle出教程啦,教程一部分写的很详细,值得学习。 一期涉及新手入门、识别数字、图像分类、词向量、情感分析、语义角色标注、机器翻译、个性化推荐。 二期会有更多的图像内容。 随便,帮国产框架打广告:加入TechWriter队伍,强大国产深度学习利器。https://github.com/PaddlePaddle/Paddle/issues/787 . .
击球手击出垒球,你会开始预测球的轨迹并立即开始奔跑。你追踪着它,不断调整你的移动步伐,最终在观众的一片雷鸣声中抓到它。无论是在听完朋友的话语还是早餐时预测咖啡的味道,你时刻在做的事就是在预测未来。在本章中,我们将讨论循环神经网络 – 一类预测未来的网络(当然,是到目前为止)。它们可以分析时间序列数据,诸如股票价格,并告诉你什么时候买入和卖出。在自动驾驶系统中,他们可以预测行车轨迹,避免发生交通意外。更一般地说,它们可在任意长度的序列上工作,而不是截止目前我们讨论的只能在固定长度的输入上工作的网络。举个例子,它们可以把语句,文件,以及语音范本作为输入,使得它们在诸如自动翻译,语音到文本或者情感分析(例如,读取电影评论并提取评论者关于该电影的感觉)的自然语言处理系统中极为有用。
许多应用涉及时间依赖,或基于时间依赖。这表示我们当前输出不仅仅取决于当前输入,还依赖于过去的输入。 RNN存在一个关键缺陷,因为几乎不可能捕获超过8或10步的关系。这个缺陷源于“ 消失梯度 ”问题,其中信息的贡献随时间在几何上衰减。 长短期存储单元(LSTM)和门控循环单元(GRU)通过帮助我们应用具有时间依赖性的网络,为消失的梯度问题提供了解决方案。 LSTM GRU 在我们探寻循环神经网络之前,先回忆一下前馈神经网络的使用过程。
无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习这个超热的技术,会不会感觉马上就out了? 现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean Code程序员,所以我写的代码也不会
领取专属 10元无门槛券
手把手带您无忧上云