影响因子的查询一般是去web of science,但是这个网站登录时间慢,而且有时候没在学校,也没法使用,需要购买。另外,国内对于一些期刊的预警在网上散布的到处都是,需要查询的话极不方便。
基于MSCI ACWI IMI指数的成分股,以下是基于各分析师情绪因子构建的Long-Short的组合的收益表现。所有七个因子都显示出正收益和优秀的风险调整收益。大多数因子在95%置信水平上显著(平均t-stat >1.96)。衡量多重共线性程度的方差膨胀因子(VIF)也很低(大于5表示多重共线性高),表明与其他因子的相关性不大。
多因子模型在量化投资中占据了绝对的C位,以Barra风险模型,采用截面因子暴露对股票收益率进行建模的方法在业界得到了广泛的使用,可以用非常简单的等式表示截面股票收益与因子暴露之间的关系:
在真核生物中,基因的编码序列在DNA链上是不连续的,被非编码序列隔开。这些基因,只有在转录因子结合到其特定的DNA序列上后,基因才开始表达。那么,我们要了解的是,什么是转录因子?什么又是转录因子结合的的特定的DNA序列(转录因子结合位点)?
本期作者:Kei Nakagawa, Tomoki Ito, Masaya Abe, Kiyoshi Izumi
简介 本文重点介绍机器学习模型中输入变量(预测因子)的选择,预处理以及评估的相关细节。所有的计算和实验将用R语言来实现。 输入数据 我们将采用11个指标(振荡器),在输入设置中不设优先级。我们将从某些指标中抽取多个变量。然后我们将写一个函数形成17个变量的输入集。 最近4000个 TF = M30 / EURUSD 柱形的报价将被采用。 In <- function(p = 16){ require(TTR) require(dplyr) require(magrittr) adx <-
今天要介绍的是西奈山伊坎医学院遗传学和基因组科学系Timothy J. O'Donnell在Cell Systems上发表的论文” MHCflurry 2.0:Improved Pan-Allele Prediction of MHC Class I-Presented Peptides byIncorporating Antigen Processing”。主要组织相容性复合物(MHC,major histocompatibility complex)Ⅰ类蛋白与多肽的结合预测是研究T细胞免疫的重要工具。通过质谱法鉴定的自然存在的MHC配体,不仅阐明了结合基序,而且可以反映MHC结合之前发生的抗原加工步骤。因此,作者开发了一个MHCⅠ类表达的综合预测因子,它结合了MHCⅠ类结合和抗原加工的新模型。实验结果表明,该模型显著优于其他现有的预测方法。
一 什么是回归分析法 “回归分析”是解析“注目变量”和“因于变量”并明确两者关系的统计方法。此时,我们把因子变量称为“说明变量”,把注目变量称为“目标变量址(被说明变量)”。清楚了回归分析的目的后,下面我们以回归分析预测法的步骤来说明什么是回归分析法: 1.根据预测目标,确定自变量和因变量 明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。 2.建立回归预测模型 依据自变
关于基因表达调控方面从 DNA-RNA 的过程当中主要是通过转录调控来影响基因的表达的。关于转录调控我们在之前的推送当中介绍过相关的内容,具体可见:[[转录因子调控]]。一般对于转录因子靶基因预测主要是通过 [[chip-seq是个什么东东]] 来进行分析的。但是通过 chip-seq 我们只知道每一个转录因子具体结合的的基因组位置是什么地方。但是对于是否具有转录调控关系。往往需要结合的基因表现出表达变化才能算是影响调控。所以今天就介绍一个综合 chip-seq,RNA-seq 综合性预测转录调控网络的数据库:GRAND: https://grand.networkmedicine.org/ 。
今天给大家介绍拉什大学的Shinya Tasaki 等人在Nature Machine Intelligence上发表的文章“Deep learning decodes the principles of differential gene expression”。作者在文章中提出了一个系统生物学模型DEcode来预测差异表达,并挖掘影响预测基因表达的因素的生物学基础,以了解其如何产生。作者在模型中使用了深度卷积神经网络,根据RNA和启动子上的全基因组结合位点预测差异表达。此外,作者通过预测组织间的差异表达、差异转录的效用和衰老的驱动因素等实验,展示了DEcode在产生生物学见解方面的广泛潜在应用。
今天为大家介绍的是来自Christina V. Theodoris和Patrick T. Ellinor团队的一篇基于迁移学习发现关键调控因子和潜在治疗靶标的论文。基因网络的映射需要大量的转录组数据,以学习基因之间的连接关系,这在数据有限的环境中,包括罕见疾病和临床无法接触的组织中,会阻碍发现。最近,迁移学习通过利用在大规模通用数据集上预训练的深度学习模型,然后对有限的特定任务数据进行微调,革新了自然语言理解和计算机视觉等领域。在这里,作者开发了一种上下文感知、基于注意力机制的深度学习模型,名为Geneformer,它在约3000万个单细胞转录组的大规模语料库上进行了预训练,以实现在网络生物学中有限数据环境下的上下文特定预测。
前言 在机器学习如何应用到量化投资的系列文章中,今天我们专门来介绍一篇来自国信证券的研究报告,来从券商角度分析这个问题。 对于最直接的问题:能否利用神经网络,要机器自己识别 K 线图,自己做出判断,本篇推文的内容无法给出肯定的答案,但也不能否定其可能性,回答它需要更为深入、更为复杂的神经网络。本篇推文的目的是利用深度神经网络中的 RNN 的一些基本结果,对多因子模型进行尝试,以检验深度神经网络在多因子、投资领域的适用性,使得投资者能够对神经网络有 更为实践的理解,并能够在投资领域有所运用。 RNN简介 R
不知不觉中,2021年已经快要结束,只差最后一个月的数据,就能完成2021年影响因子的计算了。在最近投稿,其实是一个非常好的“押宝”时间。
作者:Yimou Li, DaviD TurkingTon, anD aLireza YazDani
Collaborative Filtering with Temporal Dynamics(2010)
探索性数据分析、数据清洗与预处理和多元线性回归模型构建完毕后,为提升模型精度及其稳健性,还需进行许多操作。方差膨胀因子便是非常经典的一步,原理简单,实现优雅,效果拔群。
这是基础方法论专题的第 001 篇文章,也是因子动物园的第 027 篇独立原创文章。
解读Oh NO NO NO:为黑天鹅根据对之前SCI影响因子涨幅分析,站长设定了5~5.5区间进行预测。至于其他杂志影响因子预测,站长提供纯人工预测影像因子服务,每次只要2.99元。
版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/53876363
影响因子是某一期刊的文章在特定年份或时期被引用的频率,是衡量学术期刊影响力的一个重要指标。许多著名学术期刊均会在其网站上注明期刊的影响因子,以表明其在对应学科的影响力;许多知名学府也以学术期刊的影响因子作为评判研究生毕业的主要标准。
大约公元前3600年,黄金首先在古埃及被采掘冶炼。经历30个世纪之后,在土耳其西部的一个古王国铸造出世界上第一枚金币,此后黄金便作为王国内的一种实物货币进行流通。
养殖者通常会切开贝壳并通过显微镜计算环数来估计鲍鱼的年龄。因此,判断鲍鱼的年龄很困难,主要是因为它们的大小不仅取决于它们的年龄,还取决于食物的供应情况。而且,鲍鱼有时会形成所谓的“发育不良”种群,其生长特征与其他鲍鱼种群非常不同。这种复杂的方法增加了成本并限制了其普及。我们在这份报告中的目标是找出最好的指标来预测鲍鱼的环,然后是鲍鱼的年龄。
鲍鱼是一种贝类,在世界许多地方都被视为美味佳肴。 养殖者通常会切开贝壳并通过显微镜计算环数来估计鲍鱼的年龄。因此,判断鲍鱼的年龄很困难,主要是因为它们的大小不仅取决于它们的年龄,还取决于食物的供应情况。而且,鲍鱼有时会形成所谓的“发育不良”种群,其生长特征与其他鲍鱼种群非常不同。这种复杂的方法增加了成本并限制了其普及。我们在这份报告中的目标是找出最好的指标来预测鲍鱼的环,然后是鲍鱼的年龄。
单因子模型,考虑策略风险(即IC时序波动),最大化风险调整后收益的主动增强组合优化
最近我们被客户要求撰写关于预测UCI鲍鱼年龄数据的研究报告,包括一些图形和统计输出。
决策树 决策树方法(decision tree)是一种代表因子值和预测值之间的一种映射关系。从决策树的“根部”往“枝叶”方向走,每路过一个节点,都会将预测值通过因子的值分类。决策树的结构如下所示: 如
期刊影响因子代表了期刊近两年的论文引用数据,影响因子越高说明这本期刊收录的论文被引次数高,进一步说明了这本期刊的学术影响力就高。那么是不是期刊影响因子越高就越难呢,我们一起来探讨探讨。
今天我们来读一篇来自国信证券研究文章 RNN简介 RNN 不同于传统神经网络的感知机的最大特征就是跟时间挂上钩,即包含了一个循环的网络,就是下一时间的结果不仅受下一时间的输入的影响,也受上一时间输出的影响,进一步地说就是信息具有持久的影响力。放在实际中也很容易理解,人们在看到新的信息的时候产生的看法或者判断,不仅仅是对当前信息的反应,先前的经验、思想的也是参与进去这次信息的推断的。人类的大脑 不是一张白纸,是包含许多先验信息的,即思想的存在性、持久性是显然的。举个例子,你要对某电影中各个时点发生的事件类
生物学的一个主要目标是揭示控制基因在给定基因组和细胞状态下何时以及以何种程度进行转录的顺式调控密码。在这里,我们讨论了影响转录输出如何由DNA序列和细胞环境编码的主要调控层次。首先,我们讨论了转录因子如何以剂量依赖和协同的方式与特定的DNA序列结合。然后,我们继续讨论辅助因子如何促进转录因子的功能,并调节增强子、沉默子和启动子等模块化顺式调控元件的活性。接下来,我们考虑了这些不同元件在调控景观中的复杂相互作用,尽管我们对它们的相互作用还了解得不完全,以及它们与染色质状态和核组织的关系。我们提出了一个在机械层面上受到启发的、定量化的转录调控模型,它将整合这些多个调控层次,最终有助于我们解读顺式调控密码。
量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,荣获2021年度AMMA优秀品牌力、优秀洞察力大奖,连续2年被腾讯云+社区评选为“年度最佳作者”。 量化投资与机器学习公众号 独家解读 量化投资与机器学公众号 QIML Insight——深度研读系列 是公众号全力打造的一档深度、前沿、高水准栏目。 公众号遴选了各大期刊前沿论文,按照理解和提炼的方式为读者呈
量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,荣获2021年度AMMA优秀品牌力、优秀洞察力大奖,连续2年被腾讯云+社区评选为“年度最佳作者”。 作者:Ralph Sueppel 随着量化基本面研究的发展,很多宏观经济指标的预测,也可以使用量化模型进行建模。今年对于宏观指标的Nowcasting模型一直是很多学者和机构研究的热点。金融市场的Nowcasting主要
股票市场异常是指那些与传统金融理论不符合的现象,这些现象可能导致投资组合表现出色或者糟糕。机器学习技术可以帮助我们更好地理解这些异常,并提高投资组合的表现。
作者|Philip Ball 选文|aileen 翻译|王婷 校对|范玥灿 视频字幕翻译|陈少伟 校对|魏子敏 希望你的下一篇论文能够一鸣惊人这真是很可能发生的。 无论你正处于事业发展的什么阶段,下一篇文章成功的概率几乎是和以往一样的。 这是由东北大学(位于马萨诸塞州波士顿)的Albert-László Barabási领导的团队进行的研究。研究人员分析了上千名来自不同学科科学家的论文。以论文公开发表的记录作为研究序列,他们发现引用频次最高的论文等同地分布在序列的起始,中间和结尾各个阶段。 本视
机器学习在环境监测领域的应用,着眼于探索全球范围内的环境演化规律,人类与自然生态之间的关系以及环境变化对人类生存的影响。
作者:江海 高能物理专业博士 量子位 已获授权编辑发布 这是一篇长达5W字的干货。 作者用诙谐的笔触讲述了用机器学习入门金融领域的正确姿势,基本涵盖了基础机器学习的方法及具体应用,还有部分期权的科普。文风清奇,也哲思满满。 原文标题为《教你Machine Learning玩转金融入门notes》,内容分为三部分: 一. 金融和统计背景介绍 二. Machine Learning各个方法和在trading上的应用 2.1 Supervised Learning: Regressions 2.2 Non-Par
量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,曾荣获AMMA优秀品牌力、优秀洞察力大奖,连续4年被腾讯云+社区评选为“年度最佳作者”。 来自:Financial Analysts Journal 标题:Is Sector Neutrality in Factor Investing a Mistake? 作者:Sina Ehsani、Campbell R. Harvey、Feifei Li
今天跟大家分享的是一月份刚发表在CLINICAL CANCER RESEARCH杂志(IF :8.911)上的一篇文章。文章主要讲的是,通过比较腔内分化的主转录调节因子的功能表达和预后相关性,揭示了欧洲美国人(EA)和非洲裔美国人(AA)在乳腺癌生存率方面存在差异的功能性因素。
最近我们被客户要求撰写关于各国土地面积的研究报告,包括一些图形和统计输出。 机器学习在环境监测领域的应用,着眼于探索全球范围内的环境演化规律,人类与自然生态之间的关系以及环境变化对人类生存的影响。
致力于为全球提供优质的科研数据与分析的科睿唯安(Clarivate Analytics), 每年均会通过期刊引证报告(Journal Citation Report,JCR)公布的上一年度期刊影响因子(Impact Factor,IF),备受科研界全体人员的关注。
今天给大家介绍的是加拿大不列颠哥伦比亚大学和哈佛大学、加拿大CIFAR AI高级研究院合作发表在PNAS的一篇论文。作者借助深度学习中的卷积神经网络提出一个训练网络“ AI-TAC”,该模型通过从头开始发现已知调控因子和一些未知调控因子的结合DNA功能域(Motifs),学习推断细胞型特异性的染色质可及性(染色质开放性)。经过小鼠数据训练的AI-TAC可以解析人的DNA,最终揭示了免疫系统完全分化的调节机制。
量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,连续2年被腾讯云+社区评选为“年度最佳作者”。 Journal of Portfolio Management在2022年的开年给大家送出了因子投资特刊。本期特刊也是因子投资的第七本特刊,总共包括了14篇关于因子投资文章,其中有8篇来自业界,5篇由业界和学术界共著,还有1篇来自学术界。 The Future of Fac
最近一直在接触时间序列,所以打算写一些有关时间序列的文章,预测部分会从规则开始、到传统模型、到机器学习、再到深度学习,此外也会介绍一些时间序列的基本概念,包括自相关、平稳性、滞后性、季节性等。
本文档用于比较六个不同统计软件程序(SAS,Stata,HLM,R,SPSS和Mplus)的两级分层线性模型的过程和输出。
本文用于比较六个不同统计软件程序(SAS,Stata,HLM,R,SPSS和Mplus)的两级分层线性模型的过程和输出。
量化策略中超额收益alpha的来源可以简单分为两部分(不考虑网下打新):pure alpha+风险风格收益。pure alpha,包括量价因子、基本面因子等,能够带来稳定的超额收益;风险风格收益由风险因子贡献,包括市场因子、市值因子、行业因子、成长因子等,收益的波动性非常大。
本文用于比较六个不同统计软件程序(SAS,Stata,HLM,R,SPSS和Mplus)的两级分层线性模型的过程和输出
量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。公众号拥有来自公募、私募、券商、期货、银行、保险、高校等行业30W+关注者,连续2年被腾讯云+社区评选为“年度最佳作者”。 作者:John Hua FANa、Sebastian BINNEWIESb、Sanuri De SILVAa 前言 本文主要研究了情绪因子在商品期货截面策略的应用。文章发现,情绪变化较大的商品的表现比情绪变化较小的商品要好。虽然情绪乐观/悲观的程度也很重要,但与情绪的变化相
作者:江海 高能物理专业博士 量子位 已获授权编辑发布 欢迎回来 上接手把手教你用机器学习做金融交易(上) 2.4 Classification 接下来我们要介绍的就是Classification了。 classification跟regression的区别就是Y的类型不同,regression是Y的具体数值的预测,比如涨跌幅度,而classification是对于单纯分类的预测,比如Y的涨(Y值取1)或者跌(Y值取0)。 但是classification里面有一个地方不好处理,那就是如果想要预测的Y不仅仅
领取专属 10元无门槛券
手把手带您无忧上云