首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    最高提速20亿倍!AI引爆物理模拟引擎革命

    新智元报道 来源:Reddit 编辑:David 【新智元导读】牛津大学一项研究表明,与传统物理求解器相比,机器学习模型可将物理模拟速度提升至最高20亿倍,距离解决困扰狄拉克的模拟计算难题可能向着成功更近了一步。 1929年,英国著名量子物理学家保罗·狄拉克曾说过,“大部分物理学和整个化学的数学理论所需的基本物理定律是完全已知的,困难只是这些定律的确切应用导致方程太复杂而无法解决”。狄拉克认为,所有物理现象都可以模拟到量子,从蛋白质折叠到材料失效和气候变化都是如此。唯一的问题是控制方程太复杂,无法在现实的时间尺度上得到解决。 这是否意味着我们永远无法实现实时的物理模拟?随着研究、软件和硬件技术的进步,实时模拟在经典极限下成为可能,这在视频游戏的物理模拟中最为明显。 对碰撞、变形、断裂和流体流动等物理现象进行需要大量的计算,但目前已经开发出可以在游戏中实时模拟此类现象的模型。当然,为了实现这一目标,需要对不同算法进行了大量简化和优化。其中最快的方法是刚体物理学。 为此假设,大多数游戏中的物理模型所基于的对象可以碰撞和反弹而不变形。物体由围绕物体的凸碰撞框表示,当两个物体发生碰撞时,系统实时检测碰撞并施加适当的力来加以模拟。此类表示中不发生变形或断裂。视频游戏“Teardown”可能是刚体物理学的巅峰之作。 Teardown 是一款完全交互式的基于体素的游戏,使用刚体物理解算器来模拟破坏 不过,刚体物理虽然有利于模拟不可变形的碰撞,但不适用于头发和衣服等可变形的材料。在这些场景中,需要应用柔体动力学。以下是4种按复杂性顺序模拟可变形对象的方法: 弹簧质量模型 顾名思义,这类对象由通过弹簧相互连接的质点系表示。可以将其视为 3D 设置中的一维胡克定律网络。该模型的主要缺点是,在设置质量弹簧网络时需要大量手动工作,且材料属性和模型参数之间没有严格的关系。尽管如此,该模型在“BeamNG.Drive”中得到了很好的实现,这是一种基于弹簧质量模型来模拟车辆变形的实时车辆模拟器。 BeamNG.Drive 使用弹簧质量模型来模拟车祸中的车辆变形 基于位置的动力学 (PBD):更适合柔体形变 模拟运动学的方法通常基于力的模型,在基于位置的动力学中,位置是通过求解涉及一组包含约束方程的准静态问题来直接计算的。PBD 速度更快,非常适合游戏、动画电影和视觉效果中的应用。游戏中头发和衣服的运动一般都是通过这个模型来模拟的。PBD 不仅限于可变形固体,还可以用于模拟刚体系统和流体。

    03

    柔性机械臂:动力学建模具体方法

    建立柔性机械臂动力学方程主要利用Newton-Euler和Lagrange方程这两个最具代表性的方程,另外比较常用的还有Kane方法等。为了建立动力学模型和控制的方便,柔性关节一般简化为弹簧。当连杆存在柔性时,常采用假设模态法、有限元法、有限段法等方法描述相应臂杆的柔性变形,然后再根据需要进行截断。柔性臂杆的变形常常简化为Euler-Bernulli梁来处理,即考虑到机械臂连杆的长度总比其截面尺寸大得多,运行过程中所产生的轴向变形和剪切变形相对于挠曲变形而言非常小,柔性臂杆只考虑挠曲变形,忽略轴向变形和剪切变形。因而从动力学角度看,每根柔性连杆都可视为一段梁。

    055

    结构工程师:请避开有限元分析中6个常见的“坑”

    导读:近年来,随着有限元分析软件应用的普及,很多在过去仅仅局限于科研人员论文中的问题,逐步开始成为设计工程师的分析任务。但是另一方面,设计人员未必具备分析人员的知识储备,很多人对于结构分析缺乏有效的思路,甚至有的分析人员完全没有材料力学等相关的基本概念,在结构分析中往往会陷入各种误区,导致分析的效果大打折扣,甚至得出错误的结果。本文针对设计人员结构分析中常见的一些误区进行分析和讨论,希望引起结构分析人员的重视。本文讨论的问题仅限于建模思路和静力计算部分。 误区一:缺乏体系化的概念 很多人做结构分析,就连什么

    02

    一种基于力导向布局的层次结构可视化方法

    在数据结构优化管理的研究中,传统的力导向方法应用于层次结构数据的展示时,会存在树形布局展示不清楚的问题。为解决上述问题,通过层次数据特征分析,提出了一种面向层次数据的力导向布局算法,将力导向布局中不同层次的边赋予不同初始弹簧长度,以解决层次数据中结构信息展示不清楚的问题,然后结合层次上下行、Overview+Detail等交互技术,通过与气泡图的协同,清晰展示层次数据的内容信息,从结构和内容角度对层次数据进行可视化和可视分析。实验表明,能够有效提高层次结构数据的展示能力,最后应用于农产品中农残检测结果数据的分析和观察,取得良好效果。

    01

    图布局算法的发展

    图数据的可视化,核心在布局,而布局算法通常是按照一些特定的模型,将抽象数据进行具象展示,这一过程伴随大量的迭代计算,例如朴素的 FR 力导向算法其在计算斥力时的算法时间复杂度达到了 O(n 3 ),这在小规模数据量下可能并不会出现问题,但随着规模的不断增大,采用如此“高昂”计算复杂度的算法变得不能接受,所以,出现了许多针对算法时间复杂度进行改进的方法,需要说明的是,在这一阶段,数据集的规模仍未达到单机处理上限,例如 OpenOrd算法采用多线程并行来加速计算过程。随着数据规模的进一步扩大,图数据节点达到百万级别时,单机并行策略也变得无能为力,这时,分布式并行计算的方式为这种“大规模图数据”的处理提供了可能性。

    03
    领券