CPU 的并行编程技术,也是高性能计算中的热点,那么它和 GPU 并行编程有何区别呢? 本文将做出详细的对比,分析各自的特点,为深入学习 CPU 并行编程技术打下铺垫。...区别一:缓存管理方式的不同 •GPU:缓存对程序员不透明,程序员可根据实际情况操纵大部分缓存 (也有一部分缓存是由硬件自行管理)。 •CPU:缓存对程序员透明。应用程序员无法通过编程手段操纵缓存。...区别二:指令模型的不同 • GPU:采用 SIMT - 单指令多线程模型,一条指令配备一组硬件,对应32个线程 (一个线程束)。 • CPU:采用 MIMD - 多指令多数据类型。...用通俗易懂的话来说,GPU 采用频繁的线程切换来隐藏存储延迟,而 CPU 采用复杂的分支预测技术来达到此目的。 区别三:硬件结构的不同 • GPU 内部有很多流多处理器。...• 故 GPU 的数据吞吐量非常大,倾向于进行数据并发型优化;而 CPU 则倾向于任务并发型优化。
GPU ?...image.png CPU是被设计用来处理复杂任务的,而GPU只能做好一件事-处理百万级的低级任务(原来是被用来生成3D图形中的三角形),而且GPU有上千个ALU(算术逻辑单元),而CPU通常只有8个。...而且很多程序大部分时间都花在GPU擅长的简单运算上了,所以GPU加速程序很有必要。...CUDA编程有越来越复杂的趋势,但pyCUDA则大大简化了这个过程,并且拥有GPU加速的享受,所以面向GPU的高级编程正逐渐成为主流。 GPU内部图: ?
前言 之前第三篇也看到了, 并行方面GPU真的是无往不利, 现在再看下第二个例子, 并行规约....通过这次的例子会发现, 需要了解GPU架构, 然后写出与之对应的算法的, 两者结合才能得到令人惊叹的结果....---- 未优化并行规约 如果按照常规的思路, 两两进行进行加法运算. 每次步长翻倍即可, 从算法的角度来说, 这是没啥问题的. 但是没有依照GPU架构进行设计. ?...); /* 释放显存空间 */ cudaFree( d_a ); cudaFree( d_partial_sum ); return(0); } ---- 优化后并行规约...不过GPU确实算力太猛, 这样看还不太明显, 有意放大数据量会更加明显. ?
,即加速比与任务中不可并行部分的大小成正比,如果完全不可并行,即P = 0,则speed rate = 1,即不加速;如果完全可以并行,即P = 1, 则$speed rate = \infty$, 即加速无穷大倍...$$2. speed rate = \frac{1}{\frac{P}{N} + S} $$ 其中N是处理器个数,P是可以并行的部分,S是不可以并行,只能串行的部分。...可以看到,当N趋近无穷时,speed rate 只取决于S,即不可并行部分是系统的瓶颈所在。 GPU结构 CPU和GPU的内部结构的对比图如下: ?...图中绿色的为ALU(运算逻辑单元,Arithmetic Logic Unit), 可以看出GPU相比CPU,多了很多ALU,而且ALU占据了内部空间的绝大部分,所以可以看出GPU是对运算很强调的芯片。...下图是一个GPU核的结构,图中所有8个ALU共用一个指令单元Fetch/Decode, 而Ctx则是每个ALU独有的存储上下文,所以,只是一种SIMD结构。 ?
GPU则不同,为了保证并行数据计算性能,GPU芯片中很大一部分面积是大量的处理器,也叫做着色器核心(shader core),这是用于执行某些相对独立任务的小型处理器。...GPU是一个流处理器,它会依次处理有序的相似数据。由于这些数据的相似性(例如一组顶点或者像素),GPU可以进行大规模的并行处理。...能够并行处理的另外一个因素是,着色器调用是相对独立的,他们不需要邻近调用的信息,也不需要共享可写的内存位置。...GPU的设计就是为了并行处理大量的相似任务,因此,GPU采用了SIMD架构来最大化并行度。这个架构的特点是:有一个指令控制单元,负责发出指令。有多个执行单元,这些执行单元可以同时执行相同的指令集。...那么这种架构的优势就很明显了,可以使用更小的硅芯片(也就意味着更小的功耗)来处理数据(比如解析代码等)和进行切换(因为都是并行运算)。
并行编程主要聚焦于性能,生产率和通用性上。 所谓性能,更像是可扩展性以及效率。不再聚焦于单个CPU的性能,而是在于平均下来CPU的性能。...这个来源于摩尔定律的失效, 霍金曾经提过限制IT发展的终究会是1.光速(这个已经在分布式系统上更能看出来,通信的瓶颈限制着速度)2.物质的原子性(来源于不可测准原理) 并行编程开始了,即使很难。...并行和并发有着小小的区别:并行意味着问题的每个分区有着完全独立的处理,而不会与其他分区进行通信。并发可能是指所有的一切事务, 这可能需要紧密的,以锁的形式或其他的互相通信的方式形成的相互依赖。...因为并行编程的相对较难,导致工程师的生产率不会太高,会聚焦于更精密的细节,花费大量的时间。...通用性也是一个问题,当为了通用性,势必需要程序语言进行更为抽象,例如java至于C/C++的学习成本和开发成本。
今天和实验室同学去听了周斌老师讲的《GPU并行计算和CUDA程序开发及优化》(课程主页:http://acsa.ustc.edu.cn/HPC2015/nvidia/),觉得老师讲得非常清晰,举了很多恰当的例子...CPU是串行处理器,而GPU是并行处理器。...CPU适合处理通用型的问题,如指令执行和数值计算并重,相当于是一个”通才”;而GPU适合运算密集和高度并行的任务,相当于是一个”专才”,将数值并行运算速度发挥到极致。...在讨论GPU之前,先来看看CPU的体系架构的一些内容。 一些概念 CPU的指令分3类,分别是算术、访存和控制。...CPU内部的并行性 CPU内部也有并行计算,体现在下面3个层次: 指令级,如超标量就是通过增加流水线达到并行效果。 数据级,如矢量运算。
多GPU并行 有时候想要把所有GPU用在同一个模型里,以节省训练时间,方便快速查看结果。这个时候需要用到GPU并行。 gpu并行有模型并行和数据并行,又分为同步和异步模式。...单机多卡一般采用同步的数据并行模式:不同gpu共享变量,不同gpu运算不同数据的loss和梯度后在cpu里平均后更新到被训练参数。...tensorflow中的GPU并行策略是(下图,全网都是这个图): 每个GPU中都存有一个模型,但共享所有需要训练的变量。...* gpu_nums,例如单gpu的为32,有4块gpu,则总的batchsize为32*4=128.在代码中也很清楚的显示出了tensorflow多gpu并行的原理。...注意事项 多gpu并行训练速度会提升,但不是完全线性的,因为gpu之间的通信需要时间。
经过近 10 年的不懈努力,对计算机科学核心的深入研究,人们终于实现了一个梦想:在 GPU 上运行高级语言。...上周末,一种名为 Bend 的编程语言在开源社区引发了热烈的讨论,GitHub 的 Star 量已经超过了 8500。...GitHub:https://github.com/HigherOrderCO/Bend 作为一种大规模并行的高级编程语言,它仍处于研究阶段,但提出的思路已经让人们感到非常惊讶。...Bend 中的并行编程 这里举例说明可以在 Bend 中并行运行的程序。...而现在,我们已经可以使用解释器,从 Python 高级语言的角度一睹大规模并行编程的样子了。 参考内容: https://news.ycombinator.com/item?
一、多张gpu的卡上使用keras 有多张gpu卡时,推荐使用tensorflow 作为后端。使用多张gpu运行model,可以分为两种情况,一是数据并行,二是设备并行。...二、数据并行 数据并行将目标模型在多个设备上各复制一份,并使用每个设备上的复制品处理整个数据集的不同部分数据。...) 具体来说,该功能实现了单机多 GPU 数据并行性。...EarlyStopping 没有此类问题 二、设备并行 设备并行适用于多分支结构,一个分支用一个gpu。...并行运行案例就是小编分享给大家的全部内容了,希望能给大家一个参考。
DNN数据并行导论 典型应用分析:语音识别 语音识别是深度神经网络获得成功的一个应用范例。 语音识别应用,简单来说由声学模型建模,语言模型建模以及解码三部分构成。...其中声学模型用来模拟发音的概率分布,语言模型用来模拟词语之间的关联关系,而解码阶段就是利用上述两个模型,将声音转化为文本。...因此相较于其他方法,深度神经网络可以更为准确地模拟声学模型和语言模型。这里将深度神经网络应用于语音识别中的声学模型建模。...图2从单GPU训练到多GPU数据并行训练的概要视图 多GPU并行系统从功能上划分为用于读取和分发数据的Training Data Dispatcher和用于做数据并行训练的GPU Worker Group...大规模处理器编程实战(第2版). 清华大学出版社, 2013. [4] J. Duchi, E. Hazan and Y.
在早期,GPU 编程只能使用汇编语言,开发难度高、效率低,不过,随着高级Shader language 的兴起,在GPU 上编程已经容易多了。...关于GPGPU的更多知识点可以参阅网站http://gpgpu.org/ 旨在降低GPU 编程难度,设计基于GPU 的高级程序语言的研究同样进行的如火如荼。...2004 年,斯坦福大学研究的BROOKGPU 项目设计了一个实时的编译器,编程人员不需掌握图形学知识,只需掌握与C 语言类似的流处理语言BROOK,即可进行基于GPU 的通用编程开发。...国内浙江大学计算机学院针对高级着色语言的编译系统【30】,以及可编程图形硬件的加速等技术进行了研究。...这部分首先以较为简单的光照模型作为GPU 编程的实践理论,让读者从实际编程中学习Cg 语言的使用方法,然后介绍较为高级的BRDF 光照模型,以及透明光照模型。
Brahma是一个.NET 3.5 framework (C# 3.0)为各种处理器提供高级别的并行访问流的开源类库,现在Brahma有一个有一个GPU的提供者(主要是GUGPU),它能够在任何类别的处理器上运行...也就是说Brahma是一个并行计算(重点放在GPGPU )的框架,使用LINQ进行流转换工作(LINQ-to-streaming computation 或者 LINQ-to-GPU)。...由于现代图形处理器强大的并行处理能力和可编程流水线,使得用流处理器处理非图形数据成为可能。...Msdn杂志上的并行计算方面的文章: 并行编程方面的设计注意事项 解决多线程代码中的 11 个常见的问题 在多核处理器上运行查询 9 种可重复使用的并行数据结构和算法
Do you have a CUDA-capable GPU installed?")...的API,由于我这里只有一个GPU,因此设置为0; 使用cudaMalloc函数为是三个数组在GPU上分配空间,这个函数跟C中的malloc函数很像,但这个是指在GPU(即显存)中分配一块空间,那参数值中为什么是两个...CUDA核函数与线程索引方式》 在学习过程中,如果遇到怎么都不能理解的东西,可以先把这种用法记住,等后面写的多了,自然也就理解了 上面这个程序是学习CUDA最开始接触的程序,就跟刚开始学习任何一门编程语言时...看到这里,可能很多同学有疑惑,觉得GPU的计时有问题,因为如果使用GPU计算的话,还要把数据先传到GPU,GPU处理完成后子再传回给CPU,这两个传输时间也应该算进去。...后面,我们还会对GPU代码做一步步的优化。
CUDA CUDA是英伟达推出的GPU架构平台,通过GPU强大的并行执行效率,为计算密集型应用加速,CUDA文件以.cu结尾,支持C++语言编写,在使用CUDA前需要下载 CUDA Toolkit 内存与显存...CPU可以访问内存,GPU可以访问显存,如果需要使用GPU进行计算,必须把数据从内存复制到显存 指向显存的指针 创建一个指向显存的指针,下面的代码可以告诉你为什么要使用 (void**)类型 int*...length); cudaMalloc((void**)&dev_c, length); 此时的dev_a, dev_b, dev_c已经指向显存地址,空间大小为 length 内存与显存的数据交换 在使用GPU...blockIdx.x * 1024 + threadIdx.x; c[i] = a[i] + b[i]; } 函数限定词 核函数 核函数使用 __global__ 修饰,它在CPU上调用,在GPU...上调用,只能在GPU上执行 __device__ int add(int a, int b) { return a + b; } __global__ void DoInKernel(int
在这学期的并行计算课程中,老师讲了OpenMP,MPI,CUDA这3种并行计算编程模型,我打算把相关的知识点记录下来,便于以后用到的时候查阅。 ?...概述 OpenMP是基于共享存储体系的基于线程的并行编程模型。一个共享存储的进程由多个线程组成,而OpenMP就是基于已有线程的共享编程范例。...在OpenMP中,线程的并行化是由编程人员控制的,不是自动编程模型,而是外部变成模型。 OpenMP采用Fork-Join并行执行模型。...即程序开始于一个单独的主线程,主线程会一直串行地执行,遇到第一个并行域,通过如下过程完成并行操作: Fork: 主线程创建一系列并行的线程,由这些线程来完成并行域的代码。...\n", time_gap / 100000); return 0; } 参考文献 并行计算——结构,算法,编程(第3版),陈国良
在很多场景中我们需要通过并行化的方式来提高程序运行的速度,比较典型的需求就是并行下载。...前期遇到一个需求是要批量下载瓦片,每次大概下载上百万个瓦片,要想提高瓦片的下载速度,只能通过并行化的方式,下面把我解决此问题的思路和代码总结如下: 第一步确定线程个数(ThreadCount),这个要根据网络情况和硬件配置进行确定...以上就是使用Parallel进行并行化编程的方式,看似简单的代码,其实蕴藏了一个哲学问题(所有问题上升到一定程度都是哲学问题)——做事要细分:将一件复杂的事情尽量根据实际情况进行细分,完成一件一件小的任务
并发编程工具的选择 在能解决问题的前提下,并发编程工具选择最简单的一个,如果可以尽量使用串行编程,如果达不到要求,使用shell脚本来实现并行化。
《R并行编程实战》是一本构建大规模高效算法的综合性实用书籍,介绍各种并行技术,从R语言的并行版本lapply()的简单应用到基于Hadoop和ApacheSpark框架的不错AWS云。...在《R并行编程实战》的后,你将了解到影响并行效率的因素,包括:评估代码性能和实现负载平衡;要避免的陷阱,包括死锁和数值不稳定问题;对于你的项目,如何为适合的并行类型构建代码和数据;如何在各种计算机系统中运行
引言 在当今多核处理器的时代,利用并行计算的能力以最大化性能已成为程序员的重要任务之一。OpenMP 是一种并行编程模型,可以让我们更容易地编写多线程程序。...一、OpenMP 简介 OpenMP(Open Multi-Processing)是一种支持多平台共享内存并行编程的 API。...可移植性:OpenMP 支持多种编程语言和操作系统。 灵活性:可以逐步地并行化代码,并控制线程的数量和行为。...) { sum += array[i]; } printf("总和:%d\n", sum); return 0; } 四、总结 OpenMP 为开发人员提供了一种简洁、高效的并行编程方法...通过简单的指令和库函数,即使是对多线程编程不太熟悉的开发人员也能快速地实现并行计算。 同时,OpenMP 的可移植性和灵活性也使其成为跨平台并行开发的理想选择。
领取专属 10元无门槛券
手把手带您无忧上云