差分的定义 1.1 前向差分 对于函数 ,如果在等距节点: 则称 为 的一阶前向差分(简称差分),称 为(前向)差分算子。...1.2 逆向差分 对于函数 ,如果在等距节点: 则称 为 的一阶逆向差分,称 逆向差分算子。...1.3 中心差分 对于函数 ,如果在等距节点: 则称 为 的一阶中心差分,称 为中心差分算子。 【注】:一阶差分的差分为二阶差分,二阶差分的差分为三阶差分,以此类推。...记 分别为 的 阶前向/逆向/中心差分。 阶前向差分、逆向差分、中心差分公式分别为: 2....差分的性质 线性:如果 和 均为常数,则 乘法定则: 除法定则: 级数:
一、 实验目的 1.学习并掌握系统的差分方程表示方法以及差分方程的相关概念。 2.熟练使用filter函数对差分方程进行数值求解。 3.掌握差分方程的求解及MATLAB实现方法。...二、实验原理及方法 1.一LTI系统可以用一个线性常系数差分方程表示: 如果 aN ≠ 0 ,那么这个差分方程就是N阶的,已知系统的输入序列,用这个方程可以根据当 前输入x(n)和以前M点的输入...已知输入和差分方程的稀疏, 可用filter 对差分方程进行数值求解。最简单形式为: 2....上面差分方程解的形式为齐次解和特解,另外还可以求零输入解和零状态解理论计算中 要用到z变换,请好好掌握z变换的内容。...n=-20,…,100的单位阶跃相应s(n). 2.解以下差分方程: 要求先用理论计算,再用MATLAB编程实现,并对比两个结果。
文章目录 一、卷积 与 " 线性常系数差分方程 " 二、使用 matlab 求解 " 线性常系数差分方程 " 一、卷积 与 " 线性常系数差分方程 " ---- " 线性常系数差分方程 " 不能使用 卷积函数...因为卷积的右侧没有 y(n) , 卷积公式如下 : y(n) = \sum^{+\infty}_{m = -\infty} x(m) h(n-m) = x(n) * h(n) 而 " 线性常系数差分方程...: y(n) = \sum_{i = 0}^M b_i x(n - i) - \sum_{i = 1}^N a_i y(n - i) \ \ \ \ \ \ \ n \geq M 在 " 线性常系数差分方程..." 公式的右侧比 卷积 公式中 , 多了一个 \sum_{i = 1}^N a_i y(n - i) 项 , 其中有 y(n) 序列 , 这样就无法使用 conv 卷积函数求解 " 线性常系数差分方程..." ; 二、使用 matlab 求解 " 线性常系数差分方程 " ---- matlab 中 , 使用 filter 函数, 求解 " 线性常系数差分方程 " ; 参考文档 : filter 函数 :
前言 微分方程和差分方程的知识我们应该都知道,因为在数字信号处理中微分方程涉及了模拟滤波器,差分方程涉及了数字滤波器。但是有时会搞不清楚,或者说会在概念上混淆。...下面就分别来讲讲微分方程、差分方程以及它们之间的区别和联系。 同时,在网上看到的关于它们的文章也只是粗略的对比,讲的也并不准确。...使用差分方程来逼近微分方程(其中一种) 从高等数学的知识知道,导数本质上是信号值的差除以时间的差,并对它进行求极限,那么从这点,我们就可以推得使用极限形式的表达式来替换导数是可行的,但是如果直接用极限...差分方程 数字信号处理中,线性常系数差分方程的 IIR 滤波器是这样的: [(5)] 它是一个递归函数,那么我们现在提出问题了:式(1)和式(5)能对应起来吗?答案是肯定的。...结论 本篇举例讲解了微分方程和差分方程的基本关系,它们都是对应在时间域上,前者是连续时间变量,后者是离散时间变量;前者是拉普拉斯变换,后者是 z 变换。
文章目录 一、线性常系数差分方程概念 二、线性常系数差分方程解法 一、线性常系数差分方程概念 ---- 对于 " 离散时间系统 " , 可以使用 " 线性 常系数 差分方程 " 描述 系统 " 输入序列..." 与 " 输出序列 " 之间的关系 , N 阶 " 线性常系数差分方程 " 可以描述为 : y(n) = \sum_{i = 0}^M b_i x(n - i) - \sum_{i = 1}^N..." ; " 线性 常系数 差分方程 " 中的 " 线性 " 指的是 在 " 差分方程 " 中 , 只包含 " 输入序列 " 和 " 输出序列 " 的 一次项 , 不包含 " 高次项 " 以及 " 交叉乘积项..." ; 如果包含了 " 高次项 " 以及 " 交叉乘积项 " , 则该方程就是 " 非线性方程 " ; 二、线性常系数差分方程解法 ---- 线性常系数差分方程解法 : 经典解法 , 参考 " 组合数学..., 编程中用到该解法 ; Z 变换法 递推解法 主要用途 : 由 " 线性常系数差分方程 " 得到 系统实现结构 , 滤波器 实现 LTI 系统 " 瞬态响应 " 求解
文章目录 一、线性常系数差分方程 与 边界条件 总结 一、线性常系数差分方程 与 边界条件 总结 ---- " 线性常系数差分方程 " 中 , " 边界条件 / 初始条件 " 合适的时候 , 才是 "...线性时不变系统 " ; 对于 线性常系数差分方程 : y(n) - ay(n - 1) = x(n) 当 " 边界条件 / 初始条件 " 为 y(0) = 1 时 , 该系统是 " 非线性 时变...系统 " , 参考 【数字信号处理】线性常系数差分方程 ( 根据 “ 线性常系数差分方程 “ 与 “ 边界条件 “ 确定系统是否是 “ 线性时不变系统 “ 案例 | 根据 “ 线性时不变系统 “ 定义证明...) 博客 ; 当 " 边界条件 / 初始条件 " 为 y(0) = 0 时 , 该系统是 " 线性 时变 系统 " , 参考 【数字信号处理】线性常系数差分方程 ( 根据 “ 线性常系数差分方程...( 根据 “ 线性常系数差分方程 “ 与 “ 边界条件 “ 确定系统是否是 “ 线性时不变系统 “ 案例二 | 修改边界条件 | 使用递推方法证明 ) 博客 ;
文章目录 一、使用递推解法求解 " 线性常系数差分方程 " 二、" 线性常系数差分方程 " 初始条件的重要性 一、使用递推解法求解 " 线性常系数差分方程 " ---- 使用 " 线性常系数差分方程 "...delta(2) = ( 1 + a )a ^2 \ \ \ \ \ \ \vdots 当 n = n 时 , y(n) = (1 + a)a^n u(n) \not= h(n) " 线性常系数差分方程..." 表示的不一定是 " 线性时不变系统 LTI " ; 二、" 线性常系数差分方程 " 初始条件的重要性 ---- 在上面的示例中 , 相同的 " 线性常系数差分方程 " y(n) = ay(n-1)...\delta(n) 由于 " 初始条件 " 不同 , y(-1) = 1 和 y(-1) = 0 这两个初始条件 , 得到的 解 , 也就是 " 输出序列 " 也不同 ; 如果 " 线性常系数差分方程
C语言实现牛顿迭代法解方程 利用迭代算法解决问题,需要做好以下三个方面的工作: 一、确定迭代变量 在可以用迭代算法解决的问题中,我们可以确定至少存在一个可直接或间接地不断由旧值递推出新值的变量,...对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析得出可用来结束迭代过程的条件。...例子:用牛顿迭代法求下列方程在值等于2.0附近的根:2x3-4x2+3x-6=0。...14 }while(fabs(x-x0)>=1e-5); 15 printf ("%f\n",x); 16 return 0 ; 17 } 执行结果: 当x=1.5时,方程
文章目录 一、" 线性常系数差分方程 " 与 " 线性时不变系统 " 关联 二、根据 " 线性常系数差分方程 " 与 " 边界条件 " 确定系统是否是 " 线性时不变系统 " 方法 1、线性时不变系统概念...( 叠加性 | 不随着时间的变化而变化 ) 2、证明方法 ( 1 ) 根据概念证明 ( 2 ) 推导出通式 一、" 线性常系数差分方程 " 与 " 线性时不变系统 " 关联 ---- 根据上一篇博客...【数字信号处理】线性常系数差分方程 ( 使用递推解法求解 “ 线性常系数差分方程 “ | “ 线性常系数差分方程 “ 初始条件的重要性 ) 中 , 得出如下结论 : " 线性常系数差分方程 " 所表示的...系统 , 不一定是 " 线性系统 " , 也不一定是 " 时不变系统 " ; " 边界条件 " ( 初始条件 ) , 决定了 " 线性常系数差分方程 " 与 " 线性时不变系统 " ( LTI 系统...) 之间的关系 ; 二、根据 " 线性常系数差分方程 " 与 " 边界条件 " 确定系统是否是 " 线性时不变系统 " 方法 ---- 1、线性时不变系统概念 ( 叠加性 | 不随着时间的变化而变化 )
差分的概念。 什么是差分运算?如下图,数值计算过程我们计算函数上某点的导数时,可以选择某点附近(可以包含该点)的两个点,取这两个点的斜率来近似表示该点的导数。...一阶导数有一阶向前差分、一阶向后差分和一阶中心差分。当然也有二阶导数的计算方法,如下图。 ? 后期我们将通过差分法求解导热问题。...---- 常微分方程的初值问题 我们求解常微分方程的初值问题,一个关于自变量x和y的常微分方程,满足: y'=x+y 其中y'表示y对x的导数,且过原点,试绘制函数曲线。...根据差分的定义,我们可以选择步长dx(或Δx)为为0.1,将y'写为差分形式为(y[n+1]-y[n])/Δx,此时方程变为: (y[n+1]-y[n])/Δx=x[n]+y[n] 而已知x[0...下面我们通过程序实现方程求解与绘制 先将y'函数写出来: 1. var Fun=function(x,y){ //函数 2.
include<iostram> include<math.h> void main() { double central_difference...
本例子是简单的在WinForm程序中实现在坐标系中绘制直线方程,抛物线方程,点。重新学习解析几何方面的知识。仅供学习分享使用,如有不足之处,还请指正。...涉及知识点: 直线方程的表达方式:一般表达式Ax+By+C=0 抛物线表达式:y=Ax2+Bx+C 坐标转换:由于WinForm中的坐标原点是左上角,数学二维坐标系的原点是在中间,所以需要转换 单位转换...; 82 } 83 } 84 85 /// 86 /// 抛物线方程表达式 y=ax2+bx+c 87 /// </summary...= this.linearControl1.C; 26 //判断方程的参数,是否有效 27 LinearEquation linear...= this.parabolicControl1.C; 80 //判断方程的参数,是否有效 81 ParabolicEquation
前言: 前面我们已经通过 【算法/学习】前缀和&&差分-CSDN博客 学习了前缀和&&差分的效相关知识,现在我们开始进行相关题目的练习吧 1....二分 思路: 题意是求裁判最多说对了几次。...那么根据题目有三种情况: 数大了:说对的范围是(−inf,](−inf,a] 数小了:说对的范围是[,+inf)[a,+inf) 数相等:说对的范围是[,+1)[a,a+1) 序列上操作,那么差分可以满足...主持人调度(二) 思路: 差分数组,题目等同于求当前位置最大被多少个区间包围。...矩阵区域和 题目描述:给你一个 m x n 的矩阵 mat 和一个整数 k ,请你返回一个矩阵 answer ,其中每个 answer[i][j] 是所有满足下述条件的元素 mat[r][c] 的和:
C语言实现二分查找法 #define _CRT_SECURE_NO_WARNINGS 1 #include 1.计算元素个数 left为左下标(以中间元素的下标为标准) right
文章目录 一、使用 matlab 求解 “ 线性常系数差分方程 “ 示例 1、B 向量元素 : x(n) 参数 2、A 向量元素 : y(n) 参数 3、输入序列 4、matlab 代码 一、使用 matlab...求解 “ 线性常系数差分方程 “ 示例 ---- 描述 某个 " 线性时不变系统 " 的 " 线性常系数差分方程 " 如下 : y(n) = 1.5x(n) + 0.7y(n-1) 输入序列 : x(...n) = \delta (n) 边界条件 / 初始条件 : y(-1) = 1 求该 LTI 系统的 输出序列 ; 线性常系数差分方程 公式 : y(n) = \sum_{i = 0}^M b_i x(...= [1.5]; 2、A 向量元素 : y(n) 参数 下面讨论 A 向量 , A 向量是 y(n) 的参数 , 有几个 y(n) 项 , A 向量 就有几个元素 ; 线性常系数差分方程...中的 x(n) 项系数 B=1.5; % 线性常系数差分方程 中的 y(n) 项系数 A=[1, -0.7]; % 等效 初始条件 的 输入序列 xi xi=filtic(B,A,ys); %
文章目录 一、根据 " 线性常系数差分方程 " 与 " 边界条件 " 确定系统是否是 " 线性时不变系统 " 案例 1、使用递推方法证明 2、证明线性 3、证明时不变 先变换后移位 先移位后变换 时变系统结论...参考 【数字信号处理】线性常系数差分方程 ( “ 线性常系数差分方程 “ 与 “ 线性时不变系统 “ 关联 | 根据 “ 线性常系数差分方程 “ 与 “ 边界条件 “ 确定系统是否是 线性时不变系统方法...) 中提出的方法 , 根据 " 线性常系数差分方程 " " 边界条件 " 判断系统是否是 " 线性时不变系统 " ; 一、根据 " 线性常系数差分方程 " 与 " 边界条件 " 确定系统是否是 " 线性时不变系统..." 案例 ---- 线性常系数差分方程 : y(n) - ay(n - 1) = x(n) 边界条件 ( 初始条件 ) : y(0) = 0 分析该 " 线性常系数差分方程 " 与 " 边界条件 "...确定的系统 是否是 " 线性时不变系统 " ; 1、使用递推方法证明 假设 系统的 " 输入序列 " 为 : x(n) 使用 " 线性常系数差分方程 " 递推运算 , 可以得到 : y(n) = \sum
文章目录 一、使用 matlab 求解 “ 线性常系数差分方程 “ 示例二 1、B 向量元素 : x(n) 参数 2、A 向量元素 : y(n) 参数 3、输入序列 4、matlab 代码 一、使用...matlab 求解 “ 线性常系数差分方程 “ 示例二 ---- 描述 某个 " 线性时不变系统 " 的 " 线性常系数差分方程 " 如下 : y(n) = \sum_{i = 0}^M b_i x(n...sin(\cfrac{2 \pi f_2 n} {F_s}) \ \ \ 0 \leq n \leq 127 边界条件 / 初始条件 : y(-1) = 0 求该 LTI 系统的 输出序列 ; 线性常系数差分方程...x(n) 的参数 , 有几个 x(n) 项 , B 向量 就有几个元素 ; b_0 = 0.0223 , b_1 = 0.01 , b_2 = 0.0223 ; % 线性常系数差分方程...0.0223]; 2、A 向量元素 : y(n) 参数 下面讨论 A 向量 , A 向量是 y(n) 的参数 , 有几个 y(n) 项 , A 向量 就有几个元素 ; 线性常系数差分方程
专注高级工程师进阶,共同成长,共度寒冬 上一篇看这里: Myers 差分算法 (Myers Difference Algorithm) —— DiffUtils 之核心算法(一) 我们在上文简单的介绍了下...Myers 差分算法的原理,至少知道了他是怎么一回事,我们知道寻找最远的点方法有两个,一个是采用最短路径或者广度优先搜索算法,另一种是使用动态规划。...有了 DiffUtil,我们去调用notifyItemXXX系列函数就变得非常流畅,实现线性补间动画也能和 iOS 一样轻松啦(虽然也做了非常多的工作)。...如果有兴趣的同学,还可以看一下AsyncListDiffer这个类,它实现了在异步线程计算 Diff 然后在主线程通知 UI 更新的功能。
文章目录 一、根据 " 线性常系数差分方程 " 与 " 边界条件 " 确定系统是否是 " 线性时不变系统 " 案例 1、根据 " 线性时不变系统 " 定义证明 假设一 假设二 假设三 参考 【数字信号处理...】线性常系数差分方程 ( “ 线性常系数差分方程 “ 与 “ 线性时不变系统 “ 关联 | 根据 “ 线性常系数差分方程 “ 与 “ 边界条件 “ 确定系统是否是 线性时不变系统方法 ) 中提出的方法..., 根据 " 线性常系数差分方程 " " 边界条件 " 判断系统是否是 " 线性时不变系统 " ; 一、根据 " 线性常系数差分方程 " 与 " 边界条件 " 确定系统是否是 " 线性时不变系统 " 案例...---- 线性常系数差分方程 : y(n) - ay(n - 1) = x(n) 边界条件 ( 初始条件 ) : y(0) = 1 分析该 " 线性常系数差分方程 " 与 " 边界条件 " 确定的系统...( 使用递推解法求解 “ 线性常系数差分方程 “ | “ 线性常系数差分方程 “ 初始条件的重要性 ) 博客 ; 假设二 证明 " 线性时不变 " , 这里将 " 输入序列 " 移位 , 然后再查看
从一堆有序数字中找出其中一个数字 有两种方法 1)从头到尾依次寻找 2)从该些数字中中间部位比较若小于要找数字则在后半部分否则在前半部分 再进行这样的方式进行循环,直至找到或找不到此数字 现介绍这样的方法——二分法...在计算机科学中,二分搜索(英语:binary search),也称折半搜索(英语:half-interval search)、对数搜索(英语:logarithmic search),是一种在有序数组中查找某一特定元素的搜索算法
领取专属 10元无门槛券
手把手带您无忧上云