直方图和密度图 一、直方图 直方图反映的是一组数据的分布情况 0x1 绘制直方图 hist方法可以用来绘制直方图,为了使图像更清晰,可以指定每个柱间宽度: s = Series(np.random.randn...0x3 指定颜色 ? 二、密度图 0x1 绘制密度图 生成密度图只需要在plot的时候指定kind=‘kde’即可: ? 可以看到是反映出一些数据的分布密度。
为了更好的视觉效果,需要对绘制密度图的原始数据值进行颜色映射,即用一个连续渐变颜色条表示具体的绘图数值,且对应颜色填充在密度图曲线范围内。...下图展示利用 Matplotlib、ProPlot、SciencePlots 库分别绘制的带渐变颜色(gradient color)填充的密度图。...对于“多组数据、同一个核函数”或“同组数据、不同核函数”的情况,它们颜色填充密度图的绘制方法与同组数据一致。...下图为利用 ProPlot 库绘制的“同组数据、不同核函数”情况对应的渐变颜色填充密度图。...如果想使用连续渐变颜色对“山脊”图中的每组数据进行填充,并且用连续渐变颜色值表示数据大小,那么可以参考渐变颜色填充密度图的绘制方法。
以下密度图与柱状图都是用Seaborn实现完成。...kedeplot实现密度图: sns.set_style("whitegrid") sns.kdeplot(train_data[train_data['Survived']==1]['Age'],...distplot实现柱状图: sns.distplot(merged_data_normal['Age'],kde=False, bins=20, hist = True,norm_hist=False...data=train_data, hue='Survived') plt.title(var) plt.legend(loc="upper right") plt.show() plt.title : 设置图的名字
热图是数据分析的基本图形之一,可以方便的表示大量数据的关联关系。 在这里我们使用seaborn绘制热图 我这里直接上代码了 因为是用jupyter notebook做的 #!...flights = flights_long.pivot("month", "year", "passengers") # In[8]: flights # In[9]: #那么很明显了,seaborn热图绘制需要的数据格式即为上图...In[44]: #现在控制下分割线 f = plt.subplots(figsize=(9, 6)) sns.heatmap(flights, linewidths=.5) # In[46]: #换个颜色
之前看到师妹画的一张图很好看,是等高线图和密度图的组合。 今天自己模仿了一下,幸得师妹提名:云朵图。 不同分组的点用类似于等高线图的形式呈现,点越密颜色越深。 上侧和右侧为点的密度分布图。
但是当数据量大且分布比较集中的时候就没那么容易确定数据的分布了,这时候可以通过绘制密度或是热力图直观获取数据分布情况。...python中的 matplotlib 库中提供了 hexbin 函数绘制密度图,但是我还是更喜欢 R 语言中绘制密度图的方式,比如自带的 smoothScatter 函数以及 ggplot2 中的 geom_bin2d...上述函数利用核密度估计生成用颜色密度来表示点分布的散点图。...利用美国历年的龙卷数据,绘制美国龙卷风的分布图,直接上代码: library(maps) library(ggplot2) library(ggmap) data <- read.csv('1950-
plt.imshow(image) plt.show() dist=4 cgram=corrlogram(image,dist) plt.imshow(cgram) plt.show() 算法:颜色相关图是显示像素在图像中的占比...,反映不同颜色对间的空间位置的相关性,比颜色直方图和颜色聚合向量具有更高的检索效率,特别是查询空间关系一致的图像。
via: http://blog.csdn.net/wenyusuran/article pyHeatMap是一个使用Python生成热图的库,基本代码是我一年多之前写的,最近把它从项目中抠出来做成一个独立的库并开源...目前这个库可以生成两种图片:点击图、热图。 点击图效果如下: ? 热图效果如下: ? 绘制图片时,还可以指定一个底图,这个底图可以是任意图像,也可以是另一个点击图。...关于绘制热图中用到的方法,可以参考我以前的文章,比如 关于网页点击热区图、 http://oldj.net/article/page-heat-map/ 关于热区图的色盘 http://oldj.net.../article/heat-map-colors/ 其中热图绘制中还用到了 Bresenham画圆算法 http://oldj.net/article/bresenham-algorithm/
前面我也给大家简单介绍过 ☞R计算mRNA和lncRNA之间的相关性+散点图 ☞R语言绘图:复杂散点图绘制 相信大家在读paper的时候也见到过下面这种类型的图 这张图在传统的相关性散点图的基础上还多了一个直方图...今天我们就来带大家来重现这样的图。...sat.act) 首先我们用默认参数来画图看看效果 #绘制SATV和SATQ之间的相关性散点图和直方图 with(sat.act,scatter.hist(SATV,SATQ)) 这个是默认参数画出来的图,...ylab="SATQ", #纵坐标名 title="SATQ vs SATV" #修改主标题 ) 接下来我们整点高级的,数据中还包含有性别这一列,我们用不同的颜色来区分两种性别...,并展示密度图。
circlize软件包从0.4.10版本开始,可以使用circos.heatmap(),画圆形热图,圆形热图不但漂亮,而且可以缩小图片占用的面积。...circos.heatmap()功能 大大简化了环状热图的创建。下面是circos.heatmap()功能的用法。 首先,我们生成一个随机矩阵并将其随机分为五个组。
谁在列的位置就计算谁的相关性) #画基因之间的相关性,cor函数后面的矩阵exp[g,]要以基因为列名(转置一下) #画样本之间的相关性,cor函数后面的矩阵exp[g,]要以样本为列名(不要转置) #相关性热图...连线就代表了基因间表达值的相关性信息,红色代表正相关,绿色代表负相关,颜色越深或连线越粗代表相关强度越高。...duplicated(df$value),] #自定义边的颜色 library(RColorBrewer) col_sample = c(brewer.pal(n = 12,name = "Set3"...col_sample,nrow(mat)) #border_color = c("#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3") #根据相关性大小展示连线的颜色范围...col = col, #弦的颜色 annotationTrack = c('grid', 'name', 'axis'), #绘制外周圆弧区,显示名称和刻度轴
ggridges包提供了geom_density_ridges_gradient()函数,用于画核密度估计峰峦图 1数据结构 这里我们用到的是ggridges内了数据lincoln_weather,该数据是关于每个月各种天气指标...指按照计算出来的density填充颜色 #rel_min_height:relative to heightest point,指定去掉尾部的范围,一般0.01会比较好 # scale ;The extent...to which the different densities overlap can be controlled with the parameter.该参数控制的是密度图之间重叠的程度,值越小越分开...colorRampPalette(rev(brewer.pal(11,'Spectral')))(32)) image.png image.png image.png 3 fill = stat(x)根据计算出来的密度大小着色...`, y = `Month`, fill = 0.5-abs(0.5-stat(ecdf)))) + # fill = 0.5-abs(0.5-stat(ecdf)))图形在累积概率达到50%颜色最深
对初学者来说, 跳过了大量细节,所以跟这个教程会比较吃力,有粉丝就提问了希望可以对这些通路在在具体的癌症里面细化展示,比如绘制gsea图,热图和火山图。...enrichmentScore > 0.5,];up_kegg$group=1 save(up_kegg,kk,file = 'up_kegg.by.gsea.Rdata') 首先批量针对每个通路绘制gsea图:..., gsub('/','-',up_kegg$Description[i]), '.pdf')) }) 然后 批量针对每个通路绘制热图,...','-',up_kegg$Description[i]), '.pdf')) }) 然后 批量针对每个通路绘制火山图,...把每个通路里面的基因列表标记在火山图里面,这个时候仍然是分成两步走,首先绘制一个火山图 (不同的包做差异分析得到的矩阵列名不一样,下面是DEseq2的结果举例哦 ): ## for volcano logFC_cutoff
那么我们应该怎么合理使用这些参数让你的热图看起来更加高大上呢?...GSE19804,120个样本,其中包含60个癌症样本和60个癌旁正常样本,前面我们使用t检验,并对p值进行BH校正,筛选fdr小于0.01的基因中前40个在癌症相对于正常样本中显著差异表达的基因进行热图绘制...基因名和样本名乱成一堆,也看不出来那些样本聚类到了一起… 参数调整: #颜色参数: color 表示颜色,用来画热图的颜色,可以自己定义,默认值为colorRampPalette(rev(brewer.pal...对标签的颜色进行修改 annotation_legend 是否显示标签注释条 annotation_row 数据框格式,用来定义热图所在行的注释条 annotation_names_row 逻辑值,是否显示行标签名称...annotation_col 数据框格式,用来定义热图所在列的注释条 annotation_names_col 逻辑值,是否显示列标签名称 #其他修改参数 main 设置图的标题 fontsize
热图绘制-pheatmap 概述 新买的蓝牙耳机到了,试了试感觉还不错,低音也非常出色,窗外的颜色变得丰富了起来,看着街角那家咖啡店,仿佛回到了昨天,血色染红的天空在斑斓的世界之上,我匆匆茫茫的写下“...kmeans_k = 2) # 是否进行标准化,距离的选择 pheatmap(test, scale = "row", clustering_distance_rows = "correlation") # 颜色调试...Path3"), c(10, 4, 6)))) rownames(annotation_row) = paste("Gene", 1:20, sep = "") annotation_row # 显示行和颜色注释..., angle_col = "45") # 更改列角度为0 pheatmap(test, annotation_col = annotation_col, angle_col = "0") # 建立颜色数据集...#1B9E77", CT2 = "#D95F02"), GeneClass = c(Path1 = "#7570B3", Path2 = "#E7298A", Path3 = "#66A61E")) # 注释颜色
原创 黄小仙 上次分享了小提琴曲线(violin plot)的作图方法,今天小仙同学给大家介绍一下如何用R画出漂亮的密度图(density plot)。 Step1....weight)) #注释:x轴表示weight,y轴表示频率就不需要指定啦 p + geom_density(color = “black”, fill = “gray”) #注释:color是线条的颜色参数...,fill表示填充颜色 Step5.美化 p + geom_density(aes(color = sex)) #注释:按照性别不同组改变线条颜色 p + geom_density...(aes(fill = sex), alpha=0.4) #注释:按照性别不同组改变填充颜色,alpha表示调整透明度 到这里你已经可以画出比较高B格的density plot了,不过有些同学可能有...导出高清图的方法在这里: R语言作图技巧——导出高清图 R语言作图系列还有: R语言作图——Beeswarm(蜜蜂图) R语言作图——Circular bar plot(环形柱状图) R语言作图
[echart] 本文首发:《ECharts 饼状图颜色设置教程 - 4 种方式设置饼图颜色》 Vue ECharts 饼状图中的每个扇形颜色其实都可以自定义或者随机显示颜色。...比如 X 轴是各销售渠道名,那么你可以需要使用全局统一的识别色彩,那么就需要指定每个扇面的颜色。本文讲解 4 种配置修改 ECharts 饼图颜色的方法。...方法一:在 series 内配置饼状图颜色 series: [ itemStyle: { normal: { color: function (colors) {...colorList[colors.dataIndex]; } }, } ] [01-vue-echarts-series] EChart.js 在 series 中设置饼状图颜色的...本文介绍了如何解决在 Vue 中 ECharts 饼图指定或随机颜色的解决方案,虽然开源库已经帮我们解决了大部分造轮子的事,但总有些细枝末节的问题需要我们自己手动解决。
之前发过一篇推文 ggplot2画散点图拼接密度图 模仿下面这幅图片。但是遇到一个问题是如何给密度图某一个部分填充不同的颜色,就像下面的图片被红色方框圈住的部分。 ?...area plot : Quick start guide - R software and data visualization - Easy Guides - Wiki - STHDA 首先是最基本的密度分布图...第一步是构造数据 x<-rnorm(500,0,1) df<-data.frame(x) df 基本的密度分布图 ggplot(df,aes(x))+ geom_density() ?...image.png 填充颜色用fill参数,更改线条颜色用color参数 ggplot(df,aes(x))+ geom_density(fill="#e72a8a",...image.png 上面的图如果想要给x小于-2和大于2的填充另外一种颜色改如何实现呢?
分布(二)利用python绘制密度图 密度图 (Density chart)简介 1 密度图用于显示数据在连续数值(或时间段)的分布状况,是直方图的变种。...由于密度图不受所使用分组数量的影响,所以能更好地界定分布形状。...seaborn as sns import matplotlib.pyplot as plt # 导入数据 df = sns.load_dataset('iris') # 利用kdeplot函数绘制密度图...fig, ax = plt.subplots(1,3,constrained_layout=True, figsize=(12, 4)) # 水平密度图 ax_sub = sns.kdeplot(y=...,也可通过gaussian_kde构建密度函数后再通过matplotlib进行简单绘制,并通过修改参数或者辅以其他绘图知识自定义各种各样的密度图来适应相关使用场景。
领取专属 10元无门槛券
手把手带您无忧上云