首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python中的列表与元组

版权声明:署名,允许他人基于本文进行创作,且必须基于与原先许可协议相同的许可协议分发本文 (Creative Commons) 在python中的数据类型和控制流这篇文章中我们提到过列表...通俗来说,它就是用来存储一系列数据的。比如存储一个班级的学生。 列表中的每个元素可以通过下标(索引)访问,索引从0开始。...a", "b", "c", "d"]; 另外我们也可以创建一个空数组 list = [] 访问列表中的值 访问列表中的值,使用下标即可。...会把序列中的元素一次追加到列表的末尾。 语法: list.extend(seq) seq:可以为列表,元组,字典,集合。...例如: list = ['java', 'javascript', 'python'] print(list.index('python')) #2 元组 元组与列表的用法相同,区别就在于元组不可变,而列表是可变的

3.1K40

介绍python中的列表与元组

1.函数 函数 2.列表与元组 在编程中,经常需要使用变量来保存数据,如果数据比较少,我们创建几个变量也就算了,那如果数据很多呢。 a = 1 b = 2 c = 3 ......甚至有些时候数据多到你都不清楚到底有多少,那么就需要使用到列表了。 列表是一种让程序员再代码中批量表示/保存数据的方式。 那什么是元组呢? 元组和列表相比,非常类似。...区别再于列表中放哪些元素可以修改调整,元组中放的元素是创建元组时就设定好的,不能修改调整。 这点也就说明列表是动态的而元组是静态的。其实也就相当于C语言的数组,一个是动态数组,一个是动态数组。...可以直接使用print来打印list中的元素。 alist = [1,2,3,4,5] print(alist) # [1, 2, 3, 4, 5] 要注意的是,列表是允许存放不同类型的数据的。...元组的优势: 你有一个列表, 现在需要调用一个函数进行一些处理. 但是你有不是特别确认这个函数是否会 把你的列表数据弄乱. 那么这时候传一个元组就安全很多. 下次要讲的字典, 是一个键值对结构.

7810
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python中星号的意义(**字典,*列表或元组)

    传递实参和定义形参(所谓实参就是调用函数时传入的参数,形参则是定义函数是定义的参数)的时候,你还可以使用两个特殊的语法:*、** 。...调用函数时使用* ,** test(*args)中 * 的作用:其实就是把序列 args 中的每个元素,当作位置参数传进去。...test(**kwargs)中** 的作用:则是把字典 kwargs 变成关键字参数传递。...定义函数参数时使用* 、** def test(*args):     ...定义函数参数时 * 的含义又要有所不同,在这里 *args 表示把传进来的位置参数都装在元组 args 里面。...普通的参数定义和传递方式和 * 们都可以和平共处,不过显然 * 必须放在所有位置参数的最后,而 ** 则必须放在所有关键字参数的最后,否则就要产生歧义了。

    3.7K60

    Python中的循环:遍历列表、元组、字典和字符串

    基本上,任何可迭代的数据类型都可以使用循环进行操作。Python中的可迭代对象是以不同数据格式存储的值序列,例如: 列表(例如。...例如,给你两个列表并要求: (i)将一个列表的值与另一个列表相乘 (ii)将它们追加到一个空列表中 (iii)打印出新的列表。...让我们在一个列表中存储一些元组,每个元组代表一个类中学生的姓名和年龄: students = [('Allie', 22), ('Monty', 18), ('Rebecca', 19)] 现在的任务是...即使您对名称不感兴趣,通过i和j,您将指定这两个项目,并要求将项目j (age)追加到一个新的列表中。它被称为“元组拆包”。...下面是一些例子: 提取字典中的所有键值: for i in fruit_prices.keys(): print(i) Out: apple orange banana 将所有的值存储在一个列表中

    12.1K40

    小议Python列表和元组中的元素地址连续性

    众所周知,在Python中字典和集合依赖元素哈希表来存储,并不存在传统意义上的所谓元素“顺序”,当然,如果需要一个有序的字典可以使用collections模块提供的OrderedDict类。...在Python中,列表和元组属于有序序列,支持下标随机访问,也支持切片操作。当然,列表是可变序列而元组属于不可变序列,这一点决定了它们之间有很大不同。...今天的话题是列表和元组中的元素到底是不是连续存储的。了解C语言的朋友都知道,数组是连续存储的,所以可以下标来直接访问其中任意位置上的元素。...也就是说,x=3这样一个语句执行的过程实际上是先把数字3放入内存合适位置,然后再让变量x引用这个地址(类似于指针)。这一点同样适用于任何类型的变量,也适用于列表或元组中的元素。...也就是说,列表或元组中的元素实际上存储的是值的引用,而不是直接存储值。 因此,说列表或元组中元素是连续存储或不连续存储都是有道理的。

    4.8K100

    Python中字符串、列表、元组、字典之间的相互转换

    元组详解:走起 字符串 转换为 字典 利用eval()方法,可以将字典格式的字符串转换为字典 eval() 函数用来执行一个字符串表达式,并返回表达式的值。...利用json.loads()方法,可以将字典格式的字符串转换为字典 son.loads 用于解码 JSON 数据。该函数返回 Python 字段的数据类型。...字符串详解:走起 二、列表(list) 列表转字符串 利用‘’.join()将列表中的内容拼接程一个字符串 Python join() 方法用于将序列中的元素(必须是str) 以指定的字符(’'中指定的...zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。...元组转换为列表 使用方法list() list() 方法用于将元组转换为列表。 语法:list( tup ) tup – 要转换为列表的元组。

    11.5K11

    在 PySpark 中,如何将 Python 的列表转换为 RDD?

    在 PySpark 中,可以使用SparkContext的parallelize方法将 Python 的列表转换为 RDD(弹性分布式数据集)。...以下是一个示例代码,展示了如何将 Python 列表转换为 RDD:from pyspark import SparkContext# 创建 SparkContextsc = SparkContext.getOrCreate...()# 定义一个 Python 列表data_list = [1, 2, 3, 4, 5]# 将 Python 列表转换为 RDDrdd = sc.parallelize(data_list)# 打印...RDD 的内容print(rdd.collect())在这个示例中,我们首先创建了一个SparkContext对象,然后定义了一个 Python 列表data_list。...接着,使用SparkContext的parallelize方法将这个列表转换为 RDD,并存储在变量rdd中。最后,使用collect方法将 RDD 的内容收集到驱动程序并打印出来。

    6610

    Python 中的字符串、列表、元组和字典数据类型的特点和使用场景

    列表(list)是一种可变的序列类型,由多个元素组成。它的特点是: 可以使用方括号来定义列表。 列表中的元素可以是不同的数据类型。 列表中的元素是按照索引进行访问的,索引从0开始。...列表可以进行切片操作,获取部分子列表。 列表可以进行修改、增加、删除等操作。 列表适用于存储多个相关或无关的元素,比如存储一个班级的学生姓名、一个购物车的商品等。...元组(tuple)是一种不可变的序列类型,由多个元素组成。它的特点是: 可以使用圆括号来定义元组。 元组中的元素可以是不同的数据类型。 元组中的元素是按照索引进行访问的,索引从0开始。...元组适用于存储多个相关的元素,比如存储一个点的坐标、一本书的作者和出版日期等。 字典(dict)是一种可变的无序容器类型,由键值对组成。它的特点是: 可以使用花括号来定义字典。...字典中的键必须是唯一的,值可以重复。 字典中的键和值可以是不同的数据类型。 字典中的元素是无序的,无法通过索引进行访问。 字典适用于存储多个相关的键值对,比如存储一个人的姓名、年龄、性别等信息。

    14710

    python: 将列表中的字符串 连接成一个 长路径

    今天实习公司分配了一个数据处理的任务。...在将列表中的字符串连接成一个长路径时,我遇到了如下问题: import os path_list = ['first_directory', 'second_directory', 'file.txt...这我就纳闷了: ['first_directory', 'second_directory', 'file.txt']   细思后想明白了,os.path.join 的输入必须是一个或多个 str ,而不能是...字符串列表的本质依然是list。指令把 字符串列表 理解成了一个 str ,就相当于对 单str 进行 os.path.join ,最后当然没变化啦。   ...os.path.join(path_list) head = '' for path in path_list: head = os.path.join(head, path) print head   终于将列表中的字符串连接成了一个完整的长路径

    2.9K20

    读完本文,轻松玩转数据处理利器Pandas 1.0

    不过,Pandas 推荐用户合理使用这些数据类型,在未来的版本中也将改善特定类型运算的性能,比如正则表达式匹配(Regex Match)。...字符串数据类型最大的用处是,你可以从数据帧中只选择字符串列,这样就可以更快地分析数据集中的文本。...不过最值得注意的是,从 DataFrameGroupBy 对象中选择列时,输入 key 列表或 key 元组的方法已被弃用。现在要用 item 列表,而非键列表。...另一个最常用的变动出现在 DataFrame.hist() 和 Series.his() 中。现在 figsize 没有默认值,要想指定绘图的大小,需要输入元组。...另外,在将分类数据转换为整数时,也会产生错误的输出。特别是对于 NaN 值,其输出往往是错误的。因此,新版 Pandas 修复了这个 bug。

    3.5K10

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...方法将行追加到数据帧。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。

    28030

    创建DataFrame:10种方式任你选!

    DataFrame 是将数个 Series 按列合并而成的二维数据结构,每一列单独取出来是一个 Series ,所以我们可以直接通过Series数据进行创建。...中还有另一个支持元组列表或结构数据类型(dtype)的多维数组的构建器:from_records data3 = [{'身高': 173, '姓名': '张三','性别':'男'}, {...(DataFrame)是pandas中的二维数据结构,即数据以行和列的表格方式排列,类似于 Excel 、SQL 表,或 Series 对象构成的字典。...它在pandas中是经常使用,本身就是多个Series类型数据的合并。 本文介绍了10种不同的方式创建DataFrame,最为常见的是通过读取文件的方式进行创建,然后对数据帧进行处理和分析。...希望本文能够对读者朋友掌握数据帧DataFrame的创建有所帮助。 下一篇文章的预告:如何在DataFrame中查找满足我们需求的数据

    4.7K30

    解决FutureWarning: Using a non-tuple sequence for multidimensional indexing is dep

    在未来的版本中,将不再支持使用这种方式,而是要求使用元组的方式来进行多维数组的索引。解决方法为了解决这个问题,我们需要修改代码,将非元组的序列转换为元组。...将非元组的序列转换为元组,并使用元组的方式进行多维数组的索引,即可解决这个问题。这样不仅可以避免警告信息的产生,还可以保证代码在未来的版本中的兼容性。...在NumPy或者Pandas中,我们可以使用列表或数组来进行索引操作。这意味着我们可以通过传递一个包含索引值的列表或数组来提取多维数组中的特定元素或子数组。...使用列表或数组进行索引的的主要应用场景是从多维数组中选择特定的行、列或元素,或者提取特定的子数组。下面是一个示例代码来详细介绍如何使用列表或数组进行索引。...然后,通过传递一个包含索引值的列表或数组,我们可以实现以下操作:使用列表进行行索引,提取第1行和第2行的子数组。使用数组进行列索引,提取第1列和第3列的子数组。

    39730

    一句python,一句R︱列表、元组、字典、数据类型、自定义模块导入(格式、去重)

    创建一个复数 str(x) 将对象 x 转换为字符串 repr(x) 将对象 x 转换为表达式字符串 eval(str) 用来计算在字符串中的有效Python表达式,并返回一个对象 tuple(s) 将序列...s 转换为一个元组 list(s) 将序列 s 转换为一个列表 set(s) 转换为可变集合 dict(d) 创建一个字典。...frozenset(s) 转换为不可变集合 chr(x) 将一个整数转换为一个字符 unichr(x) 将一个整数转换为Unicode字符 ord(x) 将一个字符转换为它的整数值 hex(x) 将一个整数转换为一个十六进制字符串...——()/ tuple() =R= 固定的c() 元组是另一个数据类型,类似于List(列表)。...list[2] = 1000 # 列表中是合法应用 相当于固定的c() 元组中元素的追加,就可以直接用: 用 '+' 号 a+a 元组不可以用append添加元素 格式转化: 元组转换为字符串

    6.9K20

    读完本文,轻松玩转数据处理利器Pandas 1.0

    不过,Pandas 推荐用户合理使用这些数据类型,在未来的版本中也将改善特定类型运算的性能,比如正则表达式匹配(Regex Match)。...字符串数据类型最大的用处是,你可以从数据帧中只选择字符串列,这样就可以更快地分析数据集中的文本。...不过最值得注意的是,从 DataFrameGroupBy 对象中选择列时,输入 key 列表或 key 元组的方法已被弃用。现在要用 item 列表,而非键列表。...另一个最常用的变动出现在 DataFrame.hist() 和 Series.his() 中。现在 figsize 没有默认值,要想指定绘图的大小,需要输入元组。...另外,在将分类数据转换为整数时,也会产生错误的输出。特别是对于 NaN 值,其输出往往是错误的。因此,新版 Pandas 修复了这个 bug。

    2.3K20

    数据科学 IPython 笔记本 7.8 分层索引

    到目前为止,我们主要关注一维和二维数据,分别存储在 Pandas Series和DataFrame对象中。通常,超出此范围并存储更高维度的数据(即由多于一个或两个键索引的数据)是有用的。...具体而言,我们将考虑数据序列,其中每个点都有一个字符和数字键。 不好的方式 假设你想跟踪两个不同年份的州的数据。...我们的基于元组的索引,本质上是一个基本的多重索引,而 Pandas 的MultiIndex类型为我们提供了我们希望拥有的操作类型。...与我们开始使用的自制的基于元组的多重索引解决方案相比,这种语法更方便(并且操作更加高效!)。我们现在将进一步讨论分层索引数据上的这种索引操作。...例如,正如我们之前所做的那样,你可以从一个简单的数组列表中构造MultiIndex,提供每个层次中的索引值: pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'

    4.3K20

    Numpy数组

    ''' import numpy as np #导包 # 给 array()函数 传入一个**列表**,直接将数据以列表的形式作为一个参数传给array()函数即可。...arr = np.array([5,4,7]) arr # 给 array()函数 传入一个**元组**,直接将数据以元组的形式作为一个参数传给array()函数即可。...arr = np.array( (5,4,7) ) arr # 给 array()函数 传入一个**嵌套列表**,直接将数据以嵌套列表的形式作为一个参数传给array()函数即可,这时会生成一个多维数组...2] (2)传入某个位置位置: 数组中每个元素都有一个位置,若要获取某些连续位置的元素,则可以将这些元素对应的位置表示成一个区间(左闭右开),这和列表的切片相同。...3.数组转置:.T # 数组转置就是将数组的行旋转为列 arr = np.array( [ [1,2,3,4],[5,6,7,8],[9,10,11,12] ] ) arr.T 七、Numpy 数组合并

    4.9K10
    领券