首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python pandas导excel数据量太大报错问题

开发环境 MySQL 10.1.38-MariaDB-1~bionic Python3.7.8 开发工具 PyCharm2018.1 SmartGit18.1 Navicat15.0.28 问题描述 最近在用...python的pandas库导Excel表,遇到数据量太大,导出时候直接抛出异常 ValueError: This sheet is too large!...Your sheet size is: 1286685, 19 Max sheet size is: 1048576, 16384 原本的代码实现是: pd.to_excel("fileName.xlsx...",sheet_name="sheet1" ) 解决方法 尝试修改引擎为openpyxl,也是会抛出异常 pd.to_excel("fileName.xlsx",sheet_name="sheet1"...") 总结:对于数据量很大的Excel导出,可以尝试进行数据SQL的改写,过滤不必要的业务数据,或者使用程序分成多个Excel也是可以的,上面的方法都不想采用,可以临时用csv文件导出,csv文件可以可以支持大文件

1.2K20

使用SQLAlchemy将Pandas DataFrames导出到SQLite

本教程介绍了如何从CSV文件加载pandas DataFrame,如何从完整数据集中提取一些数据,然后使用SQLAlchemy将数据子集保存到SQLite数据库 。...应该有一个以CSV格式下载数据的链接,但是该组织在过去几周内多次更改了页面布局,这使得很难找到Excel(XLSX)以外的格式。...将DataFrame保存到SQLite 我们将使用SQLAlchemy创建与新SQLite数据库的连接,在此示例中,该数据库将存储在名为的文件中save_pandas.db。...countriesAndTerritories列匹配的 所有数据United_States_of_America都在那里!我们已成功将数据从DataFrame导出到SQLite数据库文件中。...我们只是将数据从CSV导入到pandas DataFrame中,选择了该数据的一个子集,然后将其保存到关系数据库中。

4.8K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python利用pandas处理Excel数据

    1:pandas依赖处理Excel的xlrd模块,所以我们需要提前安装这个,安装命令是:pip install xlrd 2:安装pandas模块还需要一定的编码环境,所以我们自己在安装的时候,确保你的电脑有这些环境...3:步骤1和2 准备好了之后,我们就可以开始安装pandas了,更新pandas最新版本:pip install pandas==0.24.0 4:pip show pandas可以查看你安装得是否是最新版本...,如果不安装最新版本,pandas里面会缺少一些库,导致你Python代码执行失败。...import pandas as pd df=pd.read_excel('test_data_xiejinjieguo_chongzhi.xlsx',sheet_name='recharge') #...Excel内容如下: ? 注意:Pycharm中绝对路径和相对路径一定要搞清楚,不然会导致代码运行报错。 ----

    81020

    Python处理Excel数据-pandas篇

    在计算机编程中,pandas是Python编程语言的用于数据操纵和分析的软件库。特别是,它提供操纵数值表格和时间序列的数据结构和运算操作。...目录 Python处理Excel数据-pandas篇 一、安装环境 1、打开以下文件夹(个人路径会有差异): 2、按住左Shift右键点击空白处,选择【在此处打开Powershell窗口(s)】 3...、输入以下代码通过Pip进行安装Pandas库 二、数据的新建、保存与整理 1、新建数据保存到Excel 2、读取txt文件,将内容保存到Excel(引用B站UP 孙兴华示例文件) 3、读取Excel...二、数据的新建、保存与整理 1、新建数据保存到Excel import pandas as pd path = 'E:\python\测试\测试文件.xlsx' data= pd.DataFrame...,'时间']) data.to_excel( r'E:\python\练习.xlsx') #将数据储存为Excel文件 3、读取Excel及DataFrame的使用方式 import pandas

    4K60

    Python使用pandas读取excel表格数据

    导入 import pandas as pd 若使用的是Anaconda集成包则可直接使用,否则可能需要下载:pip install pandas 读取表格并得到表格行列信息 df=pd.read_excel...格式: 直接print(df)得到的结果: 对比结果和表格,很显然表格中的第一行(黄色高亮部分)被定义为数据块的列下标,而实际视作数据的是后四行(蓝色高亮部分);并且自动在表格第一列之前加了一个行索引...,即excel第一行 x[i][j-1] = df.ix[i,j] print(x.shape) print(x) 用np.zeros()方法定义一个初试值全为0的二维数组(需要导入numpy库),...如果直接使用read_excel(filename),虽然列索引会默认为第一行,但是行索引并不会默认为第一列,而是会自动添加一个{0,1,2,3}作为行索引。...因此需要达到我们的目的需要设定一下读取时的参数,如下: df = pd.read_excel(filename,index_col=0) # 即指定第一列为行索引 print(df) print('第0

    3.2K10

    Python pandas读取Excel文件

    学习Excel技术,关注微信公众号: excelperfect 标签:Python与Excel,pandas 要使用Python处理数据,首先要将数据装载到Python,这里使用Python pandas...pandas是Python编程语言中数据操作的事实标准。如果使用Python处理任何形式的数据,需要pandas。...pf.read_excel('D:\用户.xlsx',sheet_name=[0,2])将返回excel文件的第一个和第三个工作表。返回的值是数据框架的字典。...下面的示例将只读取顾客姓名和购物名列到Python。 图5:指定我们想要的列 pd.read_csv()方法及参数 顾名思义,此方法读取csv文件。...这意味着还可以使用此方法将任何.txt文件读入Python。 read_csv()的参数类似于read_excel(),这里不再重复。然而,有一个参数值得说明:sep或delimiter。

    4.5K40

    活用Pandas:将Excel转为html格式

    大家好,我是小五 大家谈及用Pandas导出数据,应该就会想到to.xxx系列的函数。 这其中呢,比较常用的就是pd.to_csv()和pd.to_excel()。...但其实还可以将其导成Html网页格式,这里用到的函数就是pd.to_html()! 读取Excel 今天我们要实现Excel转为html格式,首先需要用读取Excel中的表格数据。...import pandas as pd data = pd.read_excel('测试.xlsx') 查看数据 data.head() ?...这两个函数非常有用,一个轻松将DataFrame等复杂的数据结构转换成HTML表格;另一个不用复杂爬虫,简单几行代码即可抓取Table表格型数据,简直是个神器!...今天篇幅很短,主要讲了Pandas中to_html()这个函数。使用该函数最大的优点是:我们在不了解html知识的情况下,就能生成一个表格型的HTML。 人生苦短,快学Python

    2.9K20

    Python Excel最佳实战 -- Pandas

    iTesting,爱测试,爱分享 在做自动化过程中,难免会跟Excel打交道,以前我们读写excel大都用xlrd, xlwt, 但是现在有了更好用的方式 --pandas, 我用了下感觉效果不错,索性写了读和写的一个小例子...0.什么是pandas: pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。...pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一 1....安装: pip install pandas 2.Excel 读写实践: import os import pandas as pd import xlsxwriter from openpyxl import...Python有很多优秀的第三方库等待着我们去发现,如果你们有比较好的实践,也可以告诉蔡老师 :)

    1K20

    懂Excel轻松入门Python数据分析包pandas(十八):pandas 中的 vlookup

    > 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 中名声最响的就是 vlookup 函数,当然在 Excel 函数公式中用于查找的函数家族也挺大...今天就来看看 pandas 中任何实现 Excel 中的多列批量 vlookup 的效果 案例1:简单匹配 一天,你收到一份数据源表如下: - 每个人每个城市的销售额数据 接着,你需要把下图的表格从数据源表匹配过来...: > 不多讲解 Excel 的做法了,因为随着需求难度逐渐提升,公式会越来越"丑" 同样看看 pandas 的做法: 你可能会觉得是我贴错了代码,这不就是案例1的代码吗?...> 多层索引及其应用,以及更多关于数据更新的高级应用,请关注我的 pandas 专栏 总结

    1.8K40

    懂Excel轻松入门Python数据分析包pandas(十八):pandas 中的 vlookup

    此系列文章收录在公众号中:数据大宇宙 > 数据处理 >E-pd > 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 中名声最响的就是 vlookup 函数,当然在 Excel 函数公式中用于查找的函数家族也挺大...今天就来看看 pandas 中任何实现 Excel 中的多列批量 vlookup 的效果 案例1:简单匹配 一天,你收到一份数据源表如下: - 每个人每个城市的销售额数据 接着,你需要把下图的表格从数据源表匹配过来...pandas 中怎么实现: - 行6、7,由于现在需要姓名匹配,我们把2份数据的姓名列设置为行索引 - 行9,简单调用 update 方法,表示 df_tg 按照 df_src 更新值 由于 pandas...: > 不多讲解 Excel 的做法了,因为随着需求难度逐渐提升,公式会越来越"丑" 同样看看 pandas 的做法: 你可能会觉得是我贴错了代码,这不就是案例1的代码吗?

    3K20

    对比Excel,Python pandas在数据框架中插入行

    标签:python与Excel,pandas Excel中的一项常见任务是在工作表中插入行,这可以通过Excel功能区命令或者右键快捷菜单或者快捷键来完成。...在Python中处理数据时,也可以将行插入到等效的数据框架中。 将行添加到数据框架中 pandas没有“插入”功能,我们不能在想象的工作表中右键单击一行,然后选择.insert()。...pandas内置函数不允许我们在特定位置插入行。内置方法只允许我们在数据框架的末尾添加一行(或多行),有两种方法:append和concat。它们的工作原理非常相似,因此这里将只讨论append。...模拟如何在Excel中插入行 在Excel中,当我们向表中插入一行时,实际上只是将所有内容下移一行(插入多行相同)。从技术上讲,我们将原始表“拆分”为两部分,然后将新行放在它们之间。...图5:在pandas中插入行的图形化演示 我们可以模仿上述技术,并在Python中执行相同的“插入”操作。回到我们假设的要求:在第三行(即索引2)之后插入一行。

    5.5K20

    对比Excel,Python pandas在数据框架中插入列

    标签:Python与Excel,pandas 在Excel中,可以通过功能区或者快捷菜单中的命令或快捷键插入列,对于Python来说,插入列也很容易。...我们已经探讨了如何将行插入到数据框架中,并且我们必须为此创建一个定制的解决方案。将列插入数据框架要容易得多,因为pandas提供了一个内置的解决方案。我们将看到一些将列插入到数据框架的不同方法。....insert()方法 最快的方法是使用pandas提供的.insert()方法。...图3 这样,我们可以根据自己的喜好对列名列表进行排序,然后将重新排序的数据框架重新分配给原始df。...但是,如果有许多列,并且数据集很大,那么循环方法将非常慢,还有其他更有效的方法,后续会介绍。 注:本文学习整理自pythoninoffice.com。

    2.9K20

    对比Excel,学习pandas数据透视表

    Excel中做数据透视表 ① 选中整个数据源; ② 依次点击“插入”—“数据透视表” ③ 选择在Excel中的哪个位置,插入数据透视表 ④ 然后根据实际需求,从不同维度展示结果 ⑤ 结果如下 pandas...,说明上述参数的具体含义 参数说明: data 相当于Excel中的"选中数据源"; index 相当于上述"数据透视表字段"中的行; columns 相当于上述"数据透视表字段"中的列; values...dropna 表示是否删除缺失值,如果为True时,则把一整行全作为缺失值删除; fill_value 表示将缺失值,用某个指定值填充。...案例说明 1)求出不同品牌下,每个月份的销售数量之和 ① 在Excel中的操作结果如下 ② 在pandas中的操作如下 df = pd.read_excel(r"C:\Users\黄伟\Desktop\...中的操作结果如下 ② 在pandas中的操作如下 df = pd.read_excel(r"C:\Users\黄伟\Desktop\pivot_table.xlsx") display(df.sample

    1.6K20
    领券