昨天我们介绍了为什么选择在Jetson TX2使用CSI相机如何在Jetson TX2上使用CSI相机,今天我们继续介绍如何获取CSI的视频。 本教程同样是来自于 在本文里,他继续告诉大家: 如何从C
还记得之前建议大家在NVIDIA Jetson产品上安装一个小工具么?答应我,NVIDIA Jetson这个小工具一定要装上!
https://towardsdatascience.com/hermes-wildfire-detection-using-nvidia-jetson-and-ryze-tello-8da123f05c64
在使用OpenCV库中的cv2模块进行图像处理时,有时可能会遇到"cv2 'has no attribute 'gapi_wip_gst_GStreamerPipeline'"的错误提示。这个错误通常是因为OpenCV库的版本问题导致的,特别是某些旧版本的OpenCV库可能不支持gapi_wip_gst_GStreamerPipeline功能。为了解决这个问题,我们可以采取以下步骤:
你已经非常清楚什么是Deepstream,它为什么存在以及3.0中的一些新功能和增强功能。我们现在要退后一步,深入了解是什么驱动Deepstream.
做AI视频分析的开发者们很熟悉NVIDIA DeepStream,这是一个强大的软件开发工具包(SDK),能帮助我们利用NVIDIA GPU的加速能力,来构建完整的视觉人工智能(AI)处理流程。这个工具包里有40多个现成的插件,可以帮助我们快速部署优化后的处理流程,这些流程具备先进的AI推理功能、对象跟踪功能,并且可以与REDIS、Kafka和MQTT等流行的物联网消息传递系统进行无缝连接。
这里使用Gstreamer + OpenCV来处理RTSP视频流,因此对Gstreamer进行调查。
DeepStream SDK是一个通用的流分析SDK,它使系统软件工程师和开发人员能够使用NVIDIA Jetson或NVIDIA Tesla平台构建高性能智能视频分析应用程序。
注意,在官方文档里,说明了Deepstream 6.2支持的GPU,可以看到不支持Jetson NANO和Jetson TX2NX。
DeepStream是基于GStreamer开发的。它们主要都是做视频流处理的。现在我们来看一个GStreamer的HelloWorld。
Jetson Nano是一款体积小巧、功能强大的人工智能嵌入式开发板,于2019年3月由英伟达推出。预装Ubuntu 18.04LTS系统,搭载英伟达研发的128核Maxwell GPU,可以快速将AI技术落地并应用于各种智能设备。相比于Jetson之前的几款产品(Jetson TK1、Jetson TX1、Jetson TX2、Jetson Xavier),Jetson Nano售价仅需99美元,大幅减少了人工智能终端的研发成本。因此,一经推出,便受到了广泛的关注。其官网地址为:Jetson Nano Developer Kit for AI and Robotics | NVIDIA
「视频结构化」是一种 AI 落地的工程化实现,目的是把 AI 模型推理流程能够一般化。它输入视频,输出结构化数据,将结果给到业务系统去形成某些行业的解决方案。
说一下这次更新原因,本来说是不在更新这个系列,但是其他博友实际使用中发现的问题。在linux-ubuntu20.04/raspi-4b 在播放视频的过程中出现了url不识别倒是网络视频无法播放的问题以及本地播放没有音频等相关问题。博主在几周前已经解决,但是最近一直很忙,今天抽空也写了一下相关的linux下播放的相关依赖文件还有代码修改原因。
深度学习是机器学习的一个分支,其特点是使用几个,有时上百个功能层。深度学习已经从能够进行线性分类的感知器发展到添加多层来近似更复杂的函数。加上卷积层使得小图像的处理性能有了提升,可以识别一些手写数字。现在,随着大型图像数据集的可用性和高性能并行计算卷积网络正在大规模图像上得到应用,从而实现了以前不实用的广泛应用。
https://www.hackster.io/dhq/descriptive-ai-camera-41481e
Kurento中涉及的概念并不算多,且很多都向GStreams对其了,总的来说比较好理解,在此将所有重要概念梳理出来便于后面的学习:
今天这个项目来自 Dimiter Kendri,是NVIDIA Jetson 社区项目里的一个
随着物联网技术的发展,实时视频分析技术已应用于智能物联网的各个领域,例如:智能零售、智能工厂、智能监控等,如果把视频比作物联网的眼睛,那么实时视频分析技术就是物联网的大脑。
视频理解任务最基础也是最主要的预处理任务是图像帧的提取。因为在视频理解任务中,视频可以看作是由一系列连续的图像帧组成的。因此,要对视频进行理解和分析,首先需要从视频中提取出每一帧的图像。
本文转载自JK Jung的帖子:https://jkjung-avt.github.io/tx2-camera-with-python/如果有侵犯到贴主利益,请立刻跟我联系。 在本贴中,贴主“我”分享了如何使用python 代码(及 OpenCV)在Jetson TX2上抓取和显示摄像头影像,包括IP摄像头, USB 网络摄像头和Jetson板载摄像头.这个简单代码也同样可以在Jetson TX1上运行。 1 准备工作 需要在Jetson TX2上安装 GStreamer 支持的 python和
随着人工智能技术的发展,目标检测和跟踪任务在端到端视频架构中逐渐普及。下图是端到端智能视频处理架构的一个示例:系统边缘的智能相机中部署了入侵者检测、人脸/目标检测等算法,并将提取到的信息随压缩的视频流一起传输到视频网关 (video gateway),然后在网关执行更复杂的视频分析任务,如人脸识别、车辆检测等,并将得到的分析数据与转码的视频流一起传输到边缘云服务器 (edge cloud)。边缘云对得到的视频语义信息进行进一步分析处理,最终的分析结果会被送到云端的视频应用服务器。云端对收到的码流数据进行两方面处理:1) 将视频转码为低分辨率版本,并保存副本;2) 分析视频,并与收到的视频语义信息进行对应关联。
点击上方“LiveVideoStack”关注我们 ▲扫描图中二维码或点击阅读原文▲ 了解音视频技术大会更多信息 // 编者按:Gstreamer作为一个比较流行的开源多媒体框架,其优秀的架构使其具有高度的模块化和良好的扩展性,并具有广泛的应用前景。LiveVideoStackCon2022上海站大会我们邀请到了英特尔 加速计算系统与图形部工程师 何俊彦老师,为我们详细介绍了Gstreamer的框架和特点,视频的模块化处理,以及其硬件加速的实现与应用案例,并总结和展望Gstreamer的发展与趋势
文章目录 dockerfile docker dockerfile python的项目基础的docker环境 docker容器环境方便一次搭建环境多次使用。也方便环境的移植。 docker FROM debian:8 MAINTAINER Yan Errol <2681506@gmail.com> RUN apt-get update && apt-get install -y \ autoconf \ automake \ bzip2 \ g++ \ git
GStreamer 是一个 基于pipeline的多媒体框架,基于GObject,以C语言写成。
来自于GitHub的一个开源的Python库,专门用于英伟达Jetson Nano的USB相机驱动。
DeepStream的Jetson版本基于JetPack 6.0 DP(开发者预览版)。此版本不适用于生产目的。
VR遥操作机械臂是一种将虚拟现实技术与机械臂控制相结合的系统,使用户可以通过虚拟现实设备操控和交互实际的机械臂。这种技术可以应用于多个领域,包括远程操作、培训、危险环境中的工作等。
人工智能 (AI) 越来越多地用于所有主要行业的各种用途,包括但不限于医疗保健、零售、金融、房地产和运输。在交通领域,特斯拉、通用汽车、福特、Alphabet、苹果和英伟达等公司已经开始投资开发自动驾驶汽车技术。此外,一些自动驾驶卡车初创公司和美国铁路协会已经制定了自动驾驶汽车的指导方针。
之前我们整理了NVIDIA深度学习中心(DLI)的免费课程:快来解锁NVIDIA深度学习培训中心(DLI)“薅羊毛”课程 今天NVIDIA DLI又增加了一门新的课程,不仅免费,还是中文课程,更重要的是,还有证书可以拿哟! 本课程中的材料和说明涵盖入门知识,可助您轻松上手,并利用您自有 NVIDIA® Jetson Nano 上的 DeepStream 运行相关应用。其中还附有其他资源的链接,以便您能深入探索让您感兴趣的相关话题。在本课程中,您将参照示例应用修改自己的应用,提供自定义输出结果,以此探索
JetCam 是一款易于使用的 Python 相机界面,用于 NVIDIA Jetson.
书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中使用。
最近想到尝试用python开发一款app,google搜索了一番后,发现确实有路可寻,目前也有了一些相对成熟的模块,于是便开始了动手实战,过程中发现这其中有很多坑,好在最终依靠google解决了,因此小记一番。
我很早之前就想开发一款app玩玩,无奈对java不够熟悉,之前也没有开发app的经验,因此一直耽搁了。最近想到尝试用python开发一款app,google搜索了一番后,发现确实有路可寻,目前也有了一些相对成熟的模块,于是便开始了动手实战,过程中发现这其中有很多坑,好在最终依靠google解决了,因此小记一番。
FFmpeg是一套可以用来记录、转换数字音频、视频,并能将其转化为流的开源计算机程序。它包括了目前领先的音/视频编码库libavcodec。 FFmpeg是在 Linux 下开发出来的,但它可以在包括 Windows在内的大多数操作系统中编译。这个项目是由 Fabrice Bellard 发起的,现在由 Michael Niedermayer 主持。可以轻易地实现多种视频格式之间的相互转换,例如可以将摄录下的视频avi等转成现在视频网站所采用的flv格式。 FFmpeg是一个开源免费跨平台的视频和音频流方案,属于自由软件,采用LGPL或GPL许可证(依据你选择的组件)。它提供了录制、转换以及流化音视 频的完整解决方案。它包含了非常先进的音频/视频编解码库libavcodec,为了保证高可移植性和编解码质量,libavcodec里很多codec 都是从头开发的。
本教程来自NVIDIA 官网blog, 原文链接: https://developer.nvidia.com/blog/creating-a-real-time-license-plate-dete
在音视频领域接触最多实现的方案通常是通过ffmpeg(PC和sever端居多)或者硬件厂家的的SDK实现特定硬件的编解码功能(机顶盒,电视等嵌入式设备)。这里我们介绍一个在国内不太常用的解决方案----gstreamer媒体库
opencv + python 配置 Table of Contents 1. Installing OpenCV from source 1.1. We need CMake to configure the installation, GCC for compilation, Python-devel and Numpy for creating Python extensions etc. 1.2. Next we need GTK support for GUI features, Camera
从 https://developer.nvidia.com/rdp/cudnn-archive 这个网址下载指定的cudnn版本,这里注意如果直接google然后下载的话只是最新版本,需要点击下面的Archived cuDNN Releases才能够找到以前版本的下载,然后选择cuDNN v×.× Library for Linux
最近,重新安装了一次系统,为了以后不再做无谓的重复查询的工作,特将本次安装及配置的过程记录下来,做为自己以后的一个参考,亦可以为想要安装 Fedora 桌面的同学的一个参考,有任何不对或者可以节省安装时间的方法,都可以在这里讨论。
本文是来自FOSDEM 2020 Open Media devroom的演讲,演讲者是来自COLLABORA的Xavier Claessens,演讲主题是GStreamer在Magic Leap One上的应用。
计算机是如何“看懂”海量视频的呢?视频本质上是一系列连续的图像帧,按照一定的帧率播放,从而形成连续的动态效果。因此,计算机分析视频的基本原理就是:解码(视频转图片)-> 分析/推理(AI 算法)-> 编码(结果呈现)
日前有朋友在 Xavier Orion 上要调用3个USB摄像头,发现只能正常启动2个,感到有些困扰,是否Jetson设备有数量限制? 其实问题的症结在于这位朋友使用OpenCV的方式调用,这种方式虽然上手容易,但是对资源消耗程度比较大,也需要开发者对摄像头一些硬件参数有足够深入的掌握,否则出错率较高。 为了协助更多开发者能有效用起Jetson上的计算资源,这里提供两种能同时调用4个不同规格USB摄像头的方法: 1. 使用英伟达”Hello AI World” 项目的videoSource()函数: 项目
昨日,NVIDIA发布了Deepstream6.3版本(增强视觉AI可能性:DeepStream 6.3推出GXF和多架构容器支持),让我们看看,到底更新了啥?
WebKit r169462,地址: http://nightly.webkit.org/ 下载到~/src下 然后解压
官方的当前gstreamer版本号还不支持x265编解码,因此要加入�x265,须要自己编译。本文基于gstreamer1.3.3版进行编译安装。须要首先自己编译gstreamer1.3.3,以及对应的base、good、bad、ugly插件
有一种技术叫记忆化(memoization),可以避免函数的多次计算,从而节省资源。顾名思义,记忆化技术可以把函数的调用结果记忆下来,或者说缓存下来。
领取专属 10元无门槛券
手把手带您无忧上云