首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

斯坦福华人教授:声波、光波,其实都是RNN!机器学习模型对应物理系统

因为此机器学习模型实际上对应于物理系统,所以这意味着可以采用经过训练的材料分布并将其“打印”到实际的物理设备中。结果将类似于ASIC(专用集成电路),但用于特定的RNN计算。...波的动力学与RNN之间的等价关系 RNN通过在输入过程的每个步骤中对输入序列的每个成员应用相同的基本操作,将输入序列转换为输出序列。先前时间步骤的记忆被编码为RNN的隐藏状态,并在每个步骤中进行更新。...隐藏状态使RNN可以保留过去的信息,并学习数据中的时间结构和长期依赖关系。...在给定的时间步长t处,RNN对序列xt的当前输入向量和上一步ht-1的隐藏状态向量进行运算,以生成输出向量yt以及更新的隐藏向量状态,ht。...问:声学中的非线性是否足够强大到足以使其不只是另一个光荣的线性模型? 答:在我们的方案中,物质响应是为隐藏状态非线性激活函数提供隐藏状态的要素,而检测电路是提供输出非线性的要素。

1K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Matlab用深度学习循环神经网络RNN长短期记忆LSTM进行波形时间序列数据预测|附代码数据

    此示例说明如何使用长短期记忆 (LSTM) 网络预测时间序列LSTM神经网络架构和原理及其在Python中的预测应用LSTM 网络是一种循环神经网络 (RNN),它通过循环时间步长和更新网络状态来处理输入数据...换句话说,在输入序列的每个时间步,LSTM 网络学习预测下一个时间步的值。有两种预测方法:开环预测和闭环预测。开环预测仅使用输入数据预测序列中的下一个时间步长。...在对后续时间步进行预测时,您会从数据源中收集真实值并将其用作输入。闭环预测通过使用先前的预测作为输入来预测序列中的后续时间步长。在这种情况下,模型不需要真实值来进行预测。...figurestfackddefdsplot(X'开环预测开环预测仅使用输入数据预测序列中的下一个时间步长。在对后续时间步进行预测时,您会从数据源中收集真实值并将其用作输入。...通过循环输入数据的时间步并将它们用作网络的输入来预测测试观察的剩余时间步的值。将预测值与目标值进行比较。

    99300

    Matlab用深度学习循环神经网络RNN长短期记忆LSTM进行波形时间序列数据预测|附代码数据

    此示例说明如何使用长短期记忆 (LSTM) 网络预测时间序列 LSTM神经网络架构和原理及其在Python中的预测应用 LSTM 网络是一种循环神经网络 (RNN),它通过循环时间步长和更新网络状态来处理输入数据...换句话说,在输入序列的每个时间步,LSTM 网络学习预测下一个时间步的值。 有两种预测方法:开环预测和闭环预测。 开环预测仅使用输入数据预测序列中的下一个时间步长。...在对后续时间步进行预测时,您会从数据源中收集真实值并将其用作输入。 闭环预测通过使用先前的预测作为输入来预测序列中的后续时间步长。在这种情况下,模型不需要真实值来进行预测。...在对后续时间步进行预测时,您会从数据源中收集真实值并将其用作输入。例如,假设您想使用在时间步 1 到 t-1 中收集的数据来预测序列的时间步 t 的值。...通过循环输入数据的时间步并将它们用作网络的输入来预测测试观察的剩余时间步的值。 将预测值与目标值进行比较。

    52200

    精选 25 个 RNN 问题

    在每个时间步长中,RNN 接受一个输入,将其与之前的隐藏状态组合在一起,并产生一个输出和一个新的隐藏状态。隐藏状态用作网络的内存,并保留过去输入的信息。...BPTT 随时间推移展开 RNN,将其视为一个深度神经网络,在时间步长中具有共享权重。梯度是通过将误差传播回展开的网络来计算的。因此,RNN 可以更新其权重并从顺序数据中学习。...时间序列分析:RNN 擅长处理瞬态数据,使其在股市预测、天气预报和异常检测等应用中很有价值。RNN 保留先前时间步长信息的能力使它们能够捕获数据中的时间模式。 手写识别:在手写识别系统中利用 RNN。...RNN 使用的权重类型: 输入权重 (Wi):这些权重决定了当前输入在每个时间步的重要性或影响。它们控制输入如何影响 RNN 的当前状态或隐藏表示。...命名两种类型的 RNN Elman RNN:Elman RNN,也称为简单 RNN,是 RNN 的基本类型之一。它使用循环连接将信息从上一个时间步长传播到当前时间步长。但是,它存在梯度消失问题。

    21510

    RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测|附代码数据

    为简化分析,我们将仅考虑离散时间序列。 长短期记忆 (LSTM) 网络是一种特殊的循环神经网络 (RNN),能够学习长期依赖关系。...在常规的 RNN 中,小权重通过几个时间步一遍又一遍地相乘,并且梯度逐渐减小到零——这种情况称为梯度消失问题。 LSTM 网络通常由通过层连接的内存块(称为单元)组成。...一般来说,门将前一时间步 ht-1 和当前输入 xt 的隐藏状态作为输入,并将它们逐点乘以权重矩阵 W,并将偏差 b 添加到乘积中。 三个主要门: 遗忘门: 这决定了哪些信息将从单元状态中删除。...为了实现这一点,我们通过滞后序列来变换序列,并将时间 (t−k)的值作为输入,将时间 t 的值作为输出,用于 k 步滞后数据集。...时间步长:给定观察的单独时间步长。在此示例中,时间步长 = 1 特征:对于单变量情况,如本例所示,特征 = 1 批量大小必须是训练样本和测试样本大小的共同因素。

    74700

    RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测

    在常规的 RNN 中,小权重通过几个时间步一遍又一遍地相乘,并且梯度逐渐减小到零——这种情况称为梯度消失问题。 LSTM 网络通常由通过层连接的内存块(称为单元)组成。...一般来说,门将前一时间步 ht-1 和当前输入 xt 的隐藏状态作为输入,并将它们逐点乘以权重矩阵 W,并将偏差 b 添加到乘积中。 三个主要门: 遗忘门: 这决定了哪些信息将从单元状态中删除。...前五个观察样本 数据准备 将数据转换为平稳数据 这是通过获取系列中两个连续值之间的差异来完成的。这种转换(通常称为差分)会删除数据中与时间相关的成分。...为了实现这一点,我们通过滞后序列来变换序列,并将时间 (t−k)的值作为输入,将时间 t 的值作为输出,用于 k 步滞后数据集。...时间步长:给定观察的单独时间步长。在此示例中,时间步长 = 1 特征:对于单变量情况,如本例所示,特征 = 1 批量大小必须是训练样本和测试样本大小的共同因素。

    1.2K30

    Transformer的潜在竞争对手QRNN论文解读,训练更快的RNN

    来源:DeepHub IMBA 本文约2100字,建议阅读5分钟 本文我们将讨论论文“拟递归神经网络”中提出的QRNN模型。 使用递归神经网络(RNN)序列建模业务已有很长时间了。...此隐藏状态包含整个序列的上下文信息。由于单个向量编码完整序列,因此LSTM无法记住长期依赖性。而且,每个时间步长的计算取决于前一个时间步长的隐藏状态,即LSTM一次计算一个时间步长。...CNN使用内核(或过滤器)通过滑动窗口捕获要素之间的对应关系。这克服了固定长度的隐藏表示形式(以及由此带来的长期依赖问题)以及RNN缺乏并行性限制的问题。...,称为“区域退出”(‘zone out),它本质上是在每个时间步选择一个随机子集来退出,对于这些通道,它只是将当前通道值复制到下一次 步骤,无需任何修改。...将编码器的最后一个隐藏状态(最后一个令牌的隐藏状态)线性投影(线性层),并在应用任何激活之前,将其添加到解码器层每个时间步长的卷积输出中(广播,因为编码器矢量较小): V是应用于最后一个编码器隐藏状态的线性权重

    1.2K31

    RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测

    在常规的 RNN 中,小权重通过几个时间步一遍又一遍地相乘,并且梯度逐渐减小到零——这种情况称为梯度消失问题。 LSTM 网络通常由通过层连接的内存块(称为单元)组成。...一般来说,门将前一时间步 ht-1 和当前输入 xt 的隐藏状态作为输入,并将它们逐点乘以权重矩阵 W,并将偏差 b 添加到乘积中。 三个主要门: 遗忘门: 这决定了哪些信息将从单元状态中删除。...前五个观察样本: 数据准备 将数据转换为平稳数据 这是通过获取系列中两个连续值之间的差异来完成的。这种转换(通常称为差分)会删除数据中与时间相关的成分。...为了实现这一点,我们通过滞后序列来变换序列,并将时间 (t−k)的值作为输入,将时间 t 的值作为输出,用于 k 步滞后数据集。...时间步长:给定观察的单独时间步长。在此示例中,时间步长 = 1。 特征:对于单变量情况,如本例所示,特征 = 1。 批量大小必须是训练样本和测试样本大小的共同因素。

    58511

    R语言基于递归神经网络RNN的温度时间序列预测

    准备数据 问题的确切表达如下:给定的数据可以追溯到 lookback 时间步长(一个时间步长为10分钟)并在每个steps 时间步长处进行采样 ,您可以预测该delay 时间步长中的温度 吗?...由于数据集中的样本是高度冗余的(样本 _N_ 和样本 _N_ + 1将具有大多数相同的时间步长),因此显式分配每个样本会很浪费。相反,您将使用原始数据即时生成样本。...先前的方法首先使时间序列平坦化,从而从输入数据中删除了时间概念。我们将尝试一个递归序列处理模型-它应该非常适合此类序列数据,因为与第一种方法不同,正是因为它利用了数据点的时间顺序。...RNN特别依赖于顺序或时间的:它们按顺序处理输入序列的时间步长,重新排列时间步长可以完全改变RNN从序列中提取的表示形式。这正是它们在序列问题(例如温度预测问题)上表现良好的原因。...双向RNN利用RNN的序列敏感性:它包含使用两个常规RNN(例如 layer_gru 和 layer_lstm ),每个RNN都沿一个方向(按时间顺序)处理输入序列,然后合并它们的表示形式。

    1.2K20

    使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测|附代码数据

    该函数有两个参数: 数据集(我们要转换为数据集的NumPy数组)和 look_back,这是用作输入变量以预测下一个时间段的先前时间步数,默认为1。...使用窗口方法进行回归的LSTM我们还可以使用多个最近的时间步长来预测下一个时间步长。这称为窗口,窗口的大小是可以针对每个问题进行调整的参数。...LSTM随时间步长回归你可以看到LSTM网络的数据准备包括时间步长。某些序列问题每个样本的时间步长可能不同。时间步长为表达我们的时间序列问题提供了另一种方法。...像上面的窗口示例一样,我们可以将时间序列中的先前时间作为输入,以预测下一时间的输出。我们可以将它们用作一个输入函数的时间步长,而不是将过去的观察结果作为单独的输入函数,这确实是问题的更准确框架。...我们可以使用与上一个示例相同的数据表示方式来执行此操作,我们将列设置为时间步长维度,例如:# 将输入修改为[样本,时间步长,特征]numpy.reshape(trainX, (trainX.shape[

    2.2K20

    python在Keras中使用LSTM解决序列问题

    样本是输入数据中样本的数量。输入中有20个样本。时间步长是每个样本的时间步长数。我们有1个时间步。最后,特征对应于每个时间步的特征数量。每个时间步都有一个功能。...具有多个特征的一对一序列问题 在最后一节中,每个输入样本都有一个时间步,其中每个时间步都有一个特征。在本节中,我们将看到如何解决输入时间步长具有多个特征的一对一序列问题。 创建数据集 首先创建数据集。...每个样本将具有3个时间步长,其中每个时间步长将包含一个单一功能,即一个数字。每个样本的输出将是三个时间步长中每个步长的数字之和。...正如我之前所说,输出中的每个元素将等于相应输入样本中时间步长中的值之和。...到目前为止,我们已经基于来自不同时间步长的多个要素值预测了单个值。在多对一序列的另一种情况下,您希望在时间步长中为每个功能预测一个值。

    1.9K20

    python在Keras中使用LSTM解决序列问题

    样本是输入数据中样本的数量。输入中有20个样本。时间步长是每个样本的时间步长数。我们有1个时间步。最后,特征对应于每个时间步的特征数量。每个时间步都有一个功能。...具有多个特征的一对一序列问题 在最后一节中,每个输入样本都有一个时间步,其中每个时间步都有一个特征。在本节中,我们将看到如何解决输入时间步长具有多个特征的一对一序列问题。 创建数据集 首先创建数据集。...每个样本将具有3个时间步长,其中每个时间步长将包含一个单一功能,即一个数字。每个样本的输出将是三个时间步长中每个步长的数字之和。...正如我之前所说,输出中的每个元素将等于相应输入样本中时间步长中的值之和。...到目前为止,我们已经基于来自不同时间步长的多个要素值预测了单个值。在多对一序列的另一种情况下,您希望在时间步长中为每个功能预测一个值。

    3.6K00

    一文简述如何为自己的项目选择合适的神经网络

    尝试MLP On: 图像数据 文字数据 时间序列数据 其他类型的数据 何时使用卷积神经网络? 卷积神经网络(CNN)被设计用于将图像数据映射到输出变量。...事实证明它非常有效,它是涉及将图像数据作为输入的任何类型的预测问题的首选方法。...在时间序列的时间步长中存在存在关系。 虽然不是专门针对非图像数据开发的,但CNN在诸如使用文本分类进行情绪分析和相关问题中实现了最先进的结果。...这包括以时间序列表示的文本序列和口语序列。它们还用作生成模型,需要序列输出,不仅需要文本,还需要生成手写等应用程序。...也许可以尝试RNN: 时间序列数据 混合网络模型 CNN或RNN模型很少单独使用。 这些类型的网络在更大的模型(具有一个或多个MLP层)中用作层。从技术上讲,这些是混合类型的神经网络架构。

    71520

    CopyNet、SeqGAN、BERTSUM…你都掌握了吗?一文总结文本摘要必备经典模型(一)

    图1 CopyNet架构 编码器(encoder)部分是一个标准的双向 LSTM,每一个时间步长对应一个输入。...如图1所示,h_t 对应的是每个时间步长的 encoder 输出,代表了输入的一些高维度特征(隐状态)。...对h_t 进行变化后将结果送给解码器(decoder)解码,一般来说送的是最后一个时间步长的输出。编码器的输出是隐状态M。 解码器是一个读取M并预测目标序列的RNN。...GRU-RNN是一个具有两个门的递归网络,u称为更新门,r为复位门,可以用以下公式描述: 其中W和b是GRU-RNN的参数,h_j是时间步长j的实值隐状态向量,x_j是对应的输入向量,⊙表示哈达玛德积...如图7所示,上面的序列是输入文本,然后是每个token的三种嵌入的总和。求和后的向量被用作几个双向转化器层的输入嵌入,为每个token生成上下文向量。

    1.5K40

    时间序列的Transformer

    季节性分解(试图使时间序列固定) 工程化更多特征(自动特征提取器,存储到百分位数等) 在时间维度上重采样 在要素维度中重新采样(而不是使用时间间隔,而对要素使用谓词来重新安排时间步长(例如,当记录的数量超过...在原始的NLP模型中,将叠加的正弦函数集合添加到每个输入嵌入中。现在我们需要一个不同的表示形式,因为我们的输入是标量值,而不是不同的单词/标记。 [图片上传中......这是一种可学习且互补的,与模型无关的时间重置。如果您过去曾经学习过傅立叶变换,这应该很容易理解。 只需将每个输入要素分解为线性分量(line)和所需的多个周期性(正弦)分量即可。...2 Vec分解方程 对于每个输入要素,我们以时间独立(时间分布层)的方式应用同一层。...这种可学习的嵌入与时间无关!最后,连接原始输入。 这是每个输入要素类别(每个要素1个学习的线性分量和1个学习的周期性分量)的学习时间嵌入的示意图,它们不同。

    1.6K30

    【进阶篇】RNN配置

    编写|PaddlePaddle 排版|wangp 本教程将指导你如何在 PaddlePaddle 中配置循环神经网络(RNN)。...对于 vanilla RNN,在每个时间步长,单步函数为: ? 其中 xt 是RNN状态,并且 It 是输入,Wx 和 Wi 分别是RNN状态和输入的变换矩阵。b 是偏差。...当前时间步处的Memory的输出作为下一时间步Memory的输入。Memory也可以具有boot layer(引导层),其输出被用作Memory的初始值。...在我们的例子中,门控循环单元的输出被用作输出Memory。请注意,rnn_out层的名称与out_mem的名称相同。...这意味着rnn_out (xt + 1)的输出被用作out_memMemory的输出。 Memory也可以是序列。在这种情况下,在每个时间步中,我们有一个序列作为循环神经网络的状态。

    97180

    matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类|附代码数据

    LSTM网络使您可以将序列数据输入网络,并根据序列数据的各个时间步进行预测。本示例使用日语元音数据集。此示例训练LSTM网络来识别给定时间序列数据的说话者,该时间序列数据表示连续讲话的两个日语元音。...中的条目  XTrain 是具有12行(每个要素一行)和不同列数(每个时间步长一列)的矩阵。...R语言用FNN-LSTM假近邻长短期记忆人工神经网络模型进行时间序列深度学习预测4个案例左右滑动查看更多01020304准备填充数据在训练过程中,默认情况下,该软件默认将训练数据分成小批并填充序列,以使它们具有相同的长度...下图说明了添加到序列中的填充量。定义LSTM网络架构定义LSTM网络体系结构。将输入大小指定为大小为12的序列(输入数据的大小)。指定具有100个隐藏单元的双向LSTM层,并输出序列的最后一个元素。...将优化器指定为  'adam',将梯度阈值指定为1,将最大历元数指定为100。要减少小批量中的填充量,请选择27的小批量大小。与最长序列的长度相同,请将序列长度指定为  'longest'。

    45600

    斯坦福深度学习课程第七弹:RNN,GRU与LSTM

    图2展示了RNN模型的架构,其中各个垂直矩形框代表每轮迭代的隐层,t.每个这样的隐层都拥有若干神经元,每个神经元都对输入向量执行线性矩阵操作而通过非线性操作输出结果(例如,tanh()函数)。...单独每个神经元的输入和输出情况如图3所示。 网络中各个参数的设置细节及含义如下: 在递归神经网络中,损失函数通常被设定为之前提到的交叉熵错误率。公式7展示了在迭代t中此函数在整个词库上的求和。...2.1 剃度弥散及梯度爆炸问题 从依次进行的步骤中得到循环神经网络中的传播权值矩阵,RNN模型确保了实现的目标是通过多次迭代步长来传播内容信息的。...图7展示了一个从较低层传播到下一层的多层双向RNN。如图所示,在网络结构中,第t个时间里每一个中间神经元接受到前一个时间(同样的RNN层)传递过来的一组参数,以及之前RNN层传递过来的两组参数。...扩展2:使用3个不同的输入来计算编码过程中每一个隐层状态: • 之前的隐层状态(标准) • 上一个编码器的隐层(图9中, ) • 之前预测的输出词, 结合上述3种输入将公式24中的解码阶段的f函数变为公式

    37330

    独家 | NLP的深度学习:ANN,RNN和LSTM详解!(附资源)

    单个神经元的图像,左边为输入,乘以每个输入的权重,神经元将函数变换应用于输入的加权和并输出结果 这些单独的神经元可以堆叠起来,形成包含不同个数神经元的层,这些层可以顺序地相邻放置,从而使得网络更深。...RNN获取每个神经元的输出,并将其作为输入反馈给它,它不仅在每个时间步长中接收新的信息,并且还向这些新信息中添加先前输出的加权值,从而,这些神经元具备了先前输入的一种“记忆”,并以某种方式将量化输出反馈给神经元...递归神经元,输出数据乘以一个权重并反馈到输入中 来自先前时间步长的输入的函数单元称为记忆单元。...这意味着RNN有一个很好的短期记忆,但在尝试记住前一段时间发生过的事情时,仍然会存在一些小问题(过去若干时间步长内的数据)。 为此,需要某种长期记忆,LSTM正是提供了长期记忆的能力。...在每个时间步长中,记忆单元可以决定如何处理状态向量:从中读取,写入或删除它,这要归功于明确的选通机制。

    2K30
    领券