目录: windows命令行中执行R dataframe 常用函数、变量 1、windows命令行中执行R 前提:已经把R的命令目录加入了系统路径中。 在windows中,命令行执行R可以用以下两种方式: (1)RCMD BATCH xxx.r 这种方式也可以写成”r cmd BATCH“、”rcmd BATCH“、”R CMD BATCH“,这几个命令都是一样的,随便你用哪个 这种方式的输出结果不是直接显示在命令行中,而是会在r文件相同路径下,自动创建一个xxx.r.Rout文本文件,输出的内容在这个文
list是R中非常重要的一个基本数据结构,它可以任意嵌套其他的任意数据结构,所以很多数据结构的核心也是由list来完成的。
参考:https://www.math.pku.edu.cn/teachers/lidf/docs/Rbook/html/_Rbook/prog-prof.html
Data Frame一般被翻译为数据框,感觉就像是R中的表,由行和列组成,与Matrix不同的是,每个列可以是不同的数据类型,而Matrix是必须相同的。
在R中,一个object可以是任何可以赋值给变量的东西(数据结构、函数、甚至是graph),一个object有两个重要的东西叫mode和class,前者决定这个object的存储方式(numeric,character,logical),后者决定函数如何处理这个object。虽然有object的概念,但是R本身仍然是一种自顶向下式的编程方式,大部分功能都是通过各式各样的函数来实现的。
特殊符号常用,但不好搜索,收藏起来做个备用,欢迎大家继续补充。 (): 通常用于函数的调用,例如ggplot(data); 或者调整优先级,如1:3+1返回2 3 4,而1:(3+1)返回1 2 3 4。 []: 用于索引向量、列表、数据框。 [[]]: 用于索引获得列表、数据框的具体值。 $: 用于数据框索引某一列。三者的区别,具体见下面例子演示。 aVector <- 1:3+1 aVector[1] ## [1] 2 aList <- list(a=aVector, b=1:(3+1)) aLis
R中判断warning和error状态的函数,我没有找到。一个玩Java的同事说,try.....catch多经典的方法,你怎么不用呢?
tibble是一种简单数据框,它对data.frame的功能进行了一些修改,更易于使用。本文将介绍tidyverse的核心R包之一——tibble包
tibble 是一种简单数据框,它对传统数据框的功能进行了一些修改,其所提供的简单数据框更易于在 tidyverse 中使用。
今天使用R爬取数据的时候发现一个奇怪的问题,我将每个属性的数据先保存在vector中,然后再合并到data.frame中时,发现打印names时数据正常显示中文,但是打印data.frame或者写入csv文件时,却始终都是utf8的格式。 代码如下:
apply函数族是R语言中数据处理的一组核心函数,通过使用apply函数,我们可以实现对数据的循环、分组、过滤、类型控制等操作。但是,由于在R语言中apply函数与其他语言循环体的处理思路是完全不一样的,所以apply函数族一直是使用者玩不转一类核心函数。
1、merge(a,b),纯粹地把两个数据集合在一起,没有沟通a、b数据集的by,这样出现的数据很多,相当于a*b条数据;
R是一种语法非常简单的表达式语言(expression language),大小写敏感。 可以在R 环境下使用的命名字符集依赖于R 所运行的系统和国家(系统的locale 设置),允许数字,字母,“.”,“_”
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快。包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度。因此,在对大数据处理上,使用data.table无疑具有极高的效率。这里我们主要讲的是它对数据框结构的快捷处理。
数据框来源主要包括用代码新建(data.frame),由已有数据转换或处理得到(取子集、运算、合并等操作),读取表格文件(read.csv,read.table等)及R语言内置数据
R的源起 R是S语言的一种实现。S语言是由 AT&T贝尔实验室开发的一种用来进行数据探索、统计分析、作图的解释型语言。最初S语言的实现版本主要是S-PLUS。S-PLUS是一个商业 软件,它基于S语言,并由MathSoft公司的统计科学部进一步完善。后来Auckland大学的Robert Gentleman 和 Ross Ihaka 及其他志愿人员开发了一个R系统。R的使用与S-PLUS有很多类似之处,两个软件有一定的兼容性。 R is free R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的
R是S语言的一种实现。S语言是由 AT&T贝尔实验室开发的一种用来进行数据探索、统计分析、作图的解释型语言。最初S语言的实现版本主要是S-PLUS。S-PLUS是一个商业 软件,它基于S语言,并由MathSoft公司的统计科学部进一步完善。后来Auckland大学的Robert Gentleman 和 Ross Ihaka 及其他志愿人员开发了一个R系统。R的使用与S-PLUS有很多类似之处,两个软件有一定的兼容性。
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
https://hbctraining.github.io/Intro-to-R/lessons/04_introR-data-wrangling.html
5.3 增加新一列 e.p df1$p.value <- c(0.01,0.02,0.07,0.05)
读取CSV文件最好的方法是使用read.table函数,许多人喜欢使用read.csv函数,该函数其实是封装的read.table函数,同时设置read.table函数的sep参数为逗号(",")。read.table函数返回的结果为data.frame。
list是R语言中包容性最强的数据对象,几乎可以容乃所有的其他数据类型。 但是包容性最强也也意味着他对于内部子对象的类型限制最少,甚至内部可以存在递归结构,这样给我们提取数据带来了很大的困难。 如果你对R语言的list结构非常熟悉,又熟练控制流等函数的操作,自然可以通过构建循环来完成目标数据的提取。但是在数据量大、结构及其复杂的情形下,自建循环无论是性能还是代码量上都很不经济。 好在确实有开发者在针对list数据结构进行操作上的优化,任坤老师的大作——rlist就是一个强大的list解析神器,它可以让我们像
1)向量(vector):用于存储数值型、字符型或逻辑型数据的一维数组。函数c()用来创建向量:
回答一个问题:save(a,file="test.RData")这句代码如果报错object a not found,是为什么,应该怎么解决?
今天在使用连接操作时发现:虽然都是合并操作函数,dplyr 包里的 *_join() 和基础包里面的 merge() 存在差异,不同的数据结构,结果也会存在偏差。
DataFrame DataFrame 是一个表格或者类似二维数组的结构,它的各行表示一个实例,各列表示一个变量。 一. DataFrame数据流编程 二. 数据读取 readr/httr/DBI 1
不知道大家平时在使用R的时候有没有见到过这样一些比较奇怪的操作符,%>%, %T>%, %$% 和 %<>%。今天小编就来跟大家掰次掰次。这些操作符都是来自于一个叫做magrittr的R包,所以我们先来安装一下。
数据结构的塑造是数据可视化前重要的一环,虽说本公众号重心在于数据可视化,可是涉及到一些至关重要的数据整合技巧,还是有必要跟大家分享一下的。 在可视化前的数据处理技巧中,导入导出、长宽转换已经跟大家详细的介绍过了。 今天跟大大家分享数据集的合并与追加,并且这里根据所依赖函数的处理效率,给出诺干套解决方案。 数据合并操作涉及以下几个问题: 横向合并; 1. 是否需要匹配字段 1.1 匹配字段合并 1.1.1 主字段同名 1.1.2 主字段不同名 1.2 无需匹配字段合并 纵向合并:(情况比较简单,列
要使Name列中的每个字符串都变为小写,选择Name列(参见数据选择教程),添加str访问器并应用lower方法。因此,每个字符串都被逐个转换。
apply函数族是R语言中数据处理的一组核心函数,通过使用apply函数,我们可以实现对数据的循环、分组、过滤、类型控制等操作。但是,由于在R语言中apply函数与其他语言循环体的处理思路是完全不一样的,所以apply函数族一直是初学者玩不转的一类核心函数。很多R语言新手,写了很多的for循环代码,也不愿意多花点时间把apply函数的使用方法了解清楚,最后把R代码写的跟C似得。
#创建新变量并保存到原有数据框 #way 1 d = data.frame(x1=1:4,x2=2:5) d$sum = d$x1+d$x2 #way 2 d= transform(d,sum=x1+x2,meanx=(x1+x2)/2) #变量的重编码 d = within(d,{ x1Less2 = NA x1Less2[x1<=2] = "y" x1Less2[x1>2] = "n" }) #变量的重命名 fix(d) names(d)[c(3,4)] = c("sum
上一次介绍了Python绘制svg的优秀可视化库Pygal,今天我们介绍一下一个优秀的R地图可视化绘制包-linemap包,顾名思义,该包是是为了绘制由线组成的地图,其官网如下:https://github.com/rCarto/linemap。该包主要拥有两个绘图函数:linemap()和 getgrid(),其中:linemap()使用网格数据的数据框显示由线组成的地图。getgrid()将一组多边形(sf对象)转换为绘制linemap()的合适数据框(data.frame)。
关系正确返回TRUE 否则FALSE== 相等 != 不相等>大于< 小于 ps:字母多的字符串比少的大
本文作者:姜晓东,博士毕业于上海交通大学,目前任教于湖南师范大学医学院,专业神经毒理学。 流行病学的数据讲究“三间分布”,即人群分布、时间分布和空间分布。其中的“空间分布”最好是在地图上展示,才比较清楚。R软件集统计分析与高级绘图于大成,是最适合做这项工作了。关于地图的绘制过程,谢益辉、邱怡轩和陈丽云等人都早有文章讲述,开R地图中文教程之先河。由于目前指导毕业论文用到,因此研究了一下。本来因为网上教程很多,曾打消了写些文字的计划,但怡轩版主鼓励说“教程者众,整合者鲜”,所以才战胜拖延症,提起拙笔综述整合一
image.png 流行病学的数据讲究“三间分布”,即人群分布、时间分布和空间分布。其中的“空间分布”最好是在地图上展示,才比较清楚。R软件集统计分析与高级绘图于大成,是最适合做这项工作了。关于地图的绘制过程,谢益辉、邱怡轩和陈丽云等人都早有文章讲述,开R地图中文教程之先河。由于目前指导毕业论文用到,因此研究了一下。本来因为网上教程很多,曾打消了写些文字的计划,但怡轩版主鼓励说“教程者众,整合者鲜”,所以才战胜拖延症,提起拙笔综述整合一下,并对DIY统计GIS地图提出了一点自己的想法。 1 地图GIS数
转载于36大数据,原文作者:Selva Prabhakaran 译者:fibears
each和times的区别是times输出的是abcdabcdabcd,each输出的是aaabbbcccddd
本文介绍了基于R语言的SparkR和基于Python的Spark-Python两个大数据平台的交互方式。主要内容包括:1.基于R语言的SparkR,支持R语言的所有统计函数和绘图功能;2.基于Python的Spark-Python,支持Python的多种数据处理和机器学习库;3.通过SparkR和Spark-Python交互,实现大数据的交互式分析。
列表是一种特别的对象集合,它的元素也由序号(下标)区分,但是各元素的类型可 以是任意对象,不同元素不必是同一类型。元素本身允许是其它复杂数据类型,比如,列表 的一个元素也允许是列表。例如:
由于 R 主要用于数据分析,导入文件比导出文件更常用,但有时我们也需要将数据或分析结果导出。函数 write.table( ) 和 write.csv( ) 可以分别将数据导出到一个 .txt 文件和 .csv 文件。
最近赖江山老师发布了一个R包: 原创R包:rdaenvpart(层次分割获取RDA和CCA单解释变量的贡献) http://wap.sciencenet.cn/home.php?mod=space&
整理数据的本质可以归纳为:对数据进行分割(Split),然后应用(Apply)某些处理函数,最后将结果重新组合(Combine)成所需的格式返回,简单描述为:Split - Apply - Combine。plyr包是Hadley Wickham为解决split – apply – combine问题而写的一个包。使用plyr包可以针对不同的数据类型,在一个函数内同时完成split – apply – combine三个步骤。plyr包的主函数是**ply形式的,函数名的第一个字符代表输入数据的类型,第二个字符代表输出数据的类型,其中第一个字符可以是(d、l、a),第二个字母可以是(d、l、a、_ ),不同的字母表示不同的数据格式,d表示数据框格式,l表示列表,a表示数组,_则表示没有输出。
Tidyverse中包含一个purrr程序包,之前在看数据处理分析时候,一直看到别人的code中,涵盖purrr,map函数,但是一直不知道这个是干什么的,现在发现purrr真的是极大的加速了数据处理流程,减少了code的编写。
今天跟大家介绍一款任坤大神写的新包——formattable。 这个包的功能很简单,但是却很具创意性,它颠覆了R语言data.frame数据表的呈现方式,允许在表格内自定义视觉化元素,比如对某一列数据进行字号、颜色、背景、以及图形化处理,整体的版式仍然保留表格的样式,但是已经具有了表和图结合的意味。 关于数据框的呈现方式,R语言内目前较好的自定义呈现方式是谢益辉大神的DT包,可以 将静态表格动态化,进行切片、索引、排序操作。 devtools::install_github("renkun-ken/form
朴素贝叶斯算法 学习与分类算法 1 训练数据 X1<-c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3) X2<-c("S","M","M","S","S","S","M","M","L
领取专属 10元无门槛券
手把手带您无忧上云