3:图的结构
大家学过离散数学都知道,一个图是由节点和节点之间的边组成的,在概率图模型里,每一个节点其实都可以表示为一个或者一组随机变量,而这些边可以看成是这些随机变量之间的概率依存关系,在离散数学里我们学过有向图和无向图...在这里我们简单的回顾下:第一个式子告诉我们当我们知道多个变量概率分布时如何计算单个变量的概率分布,而下边的式子告诉我们两个变量之间的概率关系,比如X和Y独立,就有下式的关系:
?...举一反三:我们如果描述上边的式子,就可以转化为:
?
这里我们要注意,第一个节点是没有指向的,因为无条件....使用图模型的好处是可以有效进行统计推断。而神经网络中的 节点是神经元,是一个计算节点。如果将神经网络中每个神经元看做是一个二 值随机变量,那神经网络就变成一个 sigmoid 信念网络。...图模型的参数学习的目标函数为似然函数或条件似然函数,若包含隐变量 则通常通过 EM 算法来求解。而神经网络参数学习的目标为交叉熵或平方误差等损失函数。