首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何调整nifti (nii.gz医学图像)文件的大小

nifti (nii.gz医学图像)文件是一种常用的医学图像格式,用于存储三维医学图像数据。调整nifti文件的大小可以通过以下步骤实现:

  1. 使用医学图像处理软件:使用专业的医学图像处理软件,如3D Slicer、ITK-SNAP、FSL等,打开nifti文件。
  2. 裁剪图像尺寸:在图像处理软件中,可以选择裁剪图像的尺寸。通过调整裁剪的范围,可以改变图像的大小。一般来说,裁剪图像的尺寸可以通过设置裁剪框的大小和位置来实现。
  3. 插值重采样:如果需要将图像的大小调整为特定的尺寸,可以使用插值重采样方法。插值重采样可以通过插值算法在图像中插入或删除像素,从而改变图像的大小。常用的插值算法包括最近邻插值、双线性插值和三次样条插值等。
  4. 保存调整后的图像:在完成图像大小调整后,将调整后的图像保存为nifti格式或其他常见的图像格式,如DICOM、JPEG、PNG等。

需要注意的是,调整nifti文件的大小可能会影响图像的分辨率和质量。在进行调整时,应根据具体需求和应用场景进行选择,并确保调整后的图像仍能满足相关的医学图像分析和处理需求。

腾讯云提供了一系列与医学图像处理相关的产品和服务,例如腾讯云医疗影像智能分析平台(MIAP),该平台提供了医学图像处理、智能分析、数据存储等功能,可用于医学影像的处理和分析。您可以访问腾讯云官网了解更多相关信息:https://cloud.tencent.com/product/miap

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 使用FreeSurfer进行脑区分割

    FreeSurfer 是美国哈佛-麻省理工卫生科学与技术部和马萨诸塞州总医院共同开发的一款磁共振数据处理软件包,是基于 Linux 平台的全免费开源软件。FreeSurfer 能完成对高分辨率的 MRI 图像进行分割、配准及三维重建,其处理过程主要包含去头骨、B1 偏差场校正、体数据配准、灰白质分割、面数据配准等。FreeSurfer 可以方便地处理大脑 MRI 图像,并生成高精度的灰、白质分割面和灰质、脑脊液分割面,根据这两个表面可以计算任何位置的皮质厚度及其他面数据特征如皮质 外表面积、曲率、灰质体积等,这些参数可以映射到通过白质膨胀算法得到的大脑皮质表面上直观显示。另外,FreeSurfer 还具有特征的组间差异分析及结果的可视化功能。

    05

    CMRxMotion2022—— 呼吸运动下心脏MRI分析挑战赛

    CMR 成像质量易受呼吸运动伪影的影响。挑战赛目标是评估呼吸运动对 CMR 成像质量的影响,并检查自动分割模型在不同呼吸运动水平下的鲁棒性。心脏磁共振 (CMR) 成像是目前评估心脏结构和功能的金标准模式。基于机器学习的方法在以前的 CMR 挑战(例如 ACDC、M&Ms)中取得了显着的性能。然而,在临床实践中,模型性能受到不一致的成像环境(例如,供应商和协议)、人口变化(正常与病理病例)和意外的人类行为(例如,身体运动)的挑战。通过将训练有素的机器学习模型暴露于“压力测试”中的极端情况来调查潜在的故障模式很有用。迄今为止,模型通用性方面的现有挑战大都集中在供应商可变性和解剖结构变化上,而对人类行为的影响的探索较少。对于 CMR 采集,呼吸运动是主要问题之一。有急性症状的患者不能遵守屏气指令,导致图像质量下降和分析不准确。

    02

    CARE2024——真实世界医学图像的综合分析与计算之LiQA

    许多用于医学图像分析的基础模型,例如分段任意模型(SAM),已经发布并被证明在多种任务中是有用的。然而,它们对现实世界医学成像数据的有效性尚未得到探索。例如,针对变形较大的器官(即心脏和肝脏)的特定图像对分析提出了更大的挑战。首先,呼吸运动和心脏搏动引起的错位增加了对这些数据进行联合分析的复杂性。其次,现实世界医学图像的不均匀性带来了挑战,包括模态的多样性和来自不同中心的收集引起的分布变化。第三,对于这些基础模型来说,处理不规则的 ROI(例如病变或疤痕)可能更具挑战性,因为它们的尺寸可能非常小且形状不规则。因此,开发有效且高效的迁移学习方法来充分利用这些基础模型进行现实世界的医学图像分割具有重要价值。

    01

    CARE2024——真实世界医学图像的综合分析与计算之LAScarQS++

    许多用于医学图像分析的基础模型,例如分段任意模型(SAM),已经发布并被证明在多种任务中是有用的。然而,它们对现实世界医学成像数据的有效性尚未得到探索。例如,针对变形较大的器官(即心脏和肝脏)的特定图像对分析提出了更大的挑战。首先,呼吸运动和心脏搏动引起的错位增加了对这些数据进行联合分析的复杂性。其次,现实世界医学图像的不均匀性带来了挑战,包括模态的多样性和来自不同中心的收集引起的分布变化。第三,对于这些基础模型来说,处理不规则的 ROI(例如病变或疤痕)可能更具挑战性,因为它们的尺寸可能非常小且形状不规则。因此,开发有效且高效的迁移学习方法来充分利用这些基础模型进行现实世界的医学图像分割具有重要价值。

    01

    CARE2024——真实世界医学图像的综合分析与计算之WHS++

    许多用于医学图像分析的基础模型,例如分段任意模型(SAM),已经发布并被证明在多种任务中是有用的。然而,它们对现实世界医学成像数据的有效性尚未得到探索。例如,针对变形较大的器官(即心脏和肝脏)的特定图像对分析提出了更大的挑战。首先,呼吸运动和心脏搏动引起的错位增加了对这些数据进行联合分析的复杂性。其次,现实世界医学图像的不均匀性带来了挑战,包括模态的多样性和来自不同中心的收集引起的分布变化。第三,对于这些基础模型来说,处理不规则的 ROI(例如病变或疤痕)可能更具挑战性,因为它们的尺寸可能非常小且形状不规则。因此,开发有效且高效的迁移学习方法来充分利用这些基础模型进行现实世界的医学图像分割具有重要价值。

    01

    SMILE-UHURA Challenge 2023——超高分辨率 7T 磁共振血管造影血管分割

    颅内动脉瘤、动静脉畸形和缺血性卒中的诊断和治疗通常依赖于脑血管系统的高分辨率 3D 图像。3D 形态分析、治疗模拟和治疗指导的使用推动了现有血管形态学和拓扑分析技术的发展和改进,但所有这些技术都强烈依赖于从血管造影图像中准确分割脑血管系统。众所周知,这项任务是一个具有挑战性的问题,由于存在多个小血管、目标结构的内在稀疏性、不均匀的对比分布以及复杂而独特的解剖结构。尽管困难重重,但血管分割仍然是医学图像评估辅助领域中一个潜在的相关问题1.这些分割主要用于脑血管系统的形态学和拓扑学分析,从而可以进行血流模拟2(通常为计算流体动力学 - CFD),以及血管内治疗的部署模拟和指导3(例如,在脑动脉瘤上)。因此,挑战赛集中在获取精确且连接的脑血管分段上,这些分段密集地覆盖了从每个图像的主供血动脉分支的血管。

    01

    2024年YOLO还可以继续卷 | MedYOLO是怎么从YOLO家族中一步一步走过来的?

    在3D医学影像中进行物体定位的标准方法是使用分割模型对感兴趣的目标进行 Voxel 到 Voxel 的标注。虽然这种方法使模型具有很高的准确性,但也存在一些缺点。为医学影像生成 Voxel 级准确的标注是一个耗时的过程,通常需要多个专家来验证标签的质量。由于标注者之间的变异性,器官或病变的医学术准确的分割可能会出现结构边界不确定的问题,这可能会导致附近组织中包含无关信息或排除相关信息。即使有高质量的标签,分割模型在准确标记目标结构边界时可能会遇到困难,通常需要后处理来填充缺失的内部体积并消除伪预测目标。总之,这使得分割模型的训练成本过高,同时可能会限制下游诊断或分类模型的预测能力。

    01
    领券