首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas | 如何新增数据列?

前言 在数据分析时,原始数据往往不能满足我们的需求,经常需要按照一定条件创建新的数据列或者修改原有数据列,然后进行后续分析。...本次我们将介绍四种新增数据列的方法:直接赋值、df.apply方法、df.assign方法以及按条件筛选后赋值。 本文框架 0. 导入Pandas 1. 读取数据与数据预处理 2....导入Pandas import pandas as pd 1. 读取数据与数据预处理 # 读取数据 data = pd.read_csv("....# 计算温差 data["Temperature_difference"] = data["bWendu"] - data["yWendu"] # 查看添加新列后的数据 data.head() # 返回结果...dataframe对象接收返回值; ③assign不仅可用于创建新的列,也可用于更新已有列,此时创建的新列会覆盖原有列。

2.1K40

如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Python 中的 Pandas 库创建一个空数据帧以及如何向其追加行和列。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。

28030
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas中如何查找某列中最大的值?

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    40110

    【如何在 Pandas DataFrame 中插入一列】

    前言:解决在Pandas DataFrame中插入一列的问题 Pandas是Python中重要的数据处理和分析库,它提供了强大的数据结构和函数,尤其是DataFrame,使数据处理变得更加高效和便捷。...然而,对于新手来说,在DataFrame中插入一列可能是一个令人困惑的问题。在本文中,我们将分享如何解决这个问题的方法,并帮助读者更好地利用Pandas进行数据处理。...为什么要解决在Pandas DataFrame中插入一列的问题? Pandas DataFrame是一种二维表格数据结构,由行和列组成,类似于Excel中的表格。...解决在DataFrame中插入一列的问题是学习和使用Pandas的必要步骤,也是提高数据处理和分析能力的关键所在。 在 Pandas DataFrame 中插入一个新列。...总结: 在Pandas DataFrame中插入一列是数据处理和分析的重要操作之一。通过本文的介绍,我们学会了使用Pandas库在DataFrame中插入新的列。

    1.1K10

    使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列

    一、前言 前几天在Python钻石交流群【瑜亮老师】给大家出了一道Pandas数据处理题目,使用Pandas完成下面的数据操作:把data列中的元素,按照它们出现的先后顺序进行分组排列,结果如new列中展示...new列为data列分组排序后的结果 print(df) 结果如下图所示: 二、实现过程 方法一 这里【猫药师Kelly】给出了一个解答,代码和结果如下图所示。...(*([k]*v for k, v in Counter(df['data']).items()))] print(df) 运行之后,结果如下图所示: 方法四 这里【月神】给出了三个方法,下面展示的这个方法和上面两个方法的思路是一样的...这篇文章主要盘点了使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列的问题,文中针对该问题给出了具体的解析和代码演示,一共6个方法,欢迎一起学习交流,我相信还有其他方法,...【月神】和【瑜亮老师】太强了,这个里边东西还是很多的,可以学习很多。

    2.3K10

    对比Excel,Python pandas删除数据框架中的列

    标签:Python与Excel,pandas 删除列也是Excel中的常用操作之一,可以通过功能区或者快捷菜单中的命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行的一些方法,删除列与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...准备数据框架 创建用于演示删除列的数据框架,仍然使用前面给出的“用户.xlsx”中的数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除列。...如果要覆盖原始数据框架,则要包含参数inplace=True。 图2 del方法 del是Python中的一个关键字,可用于删除对象。我们可以使用它从数据框架中删除列。...实际上我们没有删除,而是创建了一个新的数据框架,其中只包含用户姓名、城市和性别,有效地“删除”了其他两列。然后,我们将新创建的数据框架赋值给原始数据框架以完成“删除操作”。注意代码中的双方括号。

    7.2K20

    pandas中的loc和iloc_pandas获取指定数据的行和列

    大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...[1,:] (2)读取第二列的值 # 读取第二列全部值 data2 = data.loc[ : ,"B"] 结果: (3)同时读取某行某列 # 读取第1行,第B列对应的值 data3...3, 2:4]中的第4行、第5列取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    10K21

    SQL Server 数据库调整表中列的顺序操作

    SQL Server 数据库中表一旦创建,我们不建议擅自调整列的顺序,特别是对应的应用系统已经上线,因为部分开发人员,不一定在代码中指明了列名。...表是否可以调整列的顺序,其实可以自主设置,我们建议在安装后设置为禁止。 那么,如果确实需要调整某一列的顺序,我们是怎么操作的呢? 下面,我们就要演示一下怎么取消这种限制。...需求及问题描述 1)测试表 Test001 (2)更新前 (3)例如,需求为调整 SN5 和SN4的序列 点击保存时报错 修改数据库表结构时提示【不允许保存更改。...您所做的更改要求删除并重新创建以下表。您对无法重新创建的标进行了更改或者启用了“阻止保存要求重新创建表的更改"选项。】...】复选框 Step 4 再次执行调整列顺序操作,修改 OK

    4.3K20

    用过Excel,就会获取pandas数据框架中的值、行和列

    标签:python与Excel,pandas 至此,我们已经学习了使用Python pandas来输入/输出(即读取和保存文件)数据,现在,我们转向更深入的部分。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...在pandas中,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...想想如何在Excel中引用单元格,例如单元格“C10”或单元格区域“C10:E20”。以下两种方法都遵循这种行和列的思想。 方括号表示法 使用方括号表示法,语法如下:df[列名][行索引]。

    19.2K60

    利用pandas我想提取这个列中的楼层的数据,应该怎么操作?

    一、前言 前几天在Python白银交流群【东哥】问了一个Pandas数据处理的问题。问题如下所示:大佬们,利用pandas我想提取这个列中的楼层的数据,应该怎么操作?...其他【暂无数据】这些数据需要删除,其他的有数字的就正常提取出来就行。 二、实现过程 这里粉丝的目标应该是去掉暂无数据,然后提取剩下数据中的楼层数据。看需求应该是既要层数也要去掉暂无数据。...目标就只有一个,提取楼层数据就行,可以直接跳过暂无数据这个,因为暂无数据里边是没有数据的,相当于需要剔除。...如果你也有类似这种数据分析的小问题,欢迎随时来交流群学习交流哦,有问必答! 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas数据处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    12510

    Pandas中的数据分类

    公众号:尤而小屋 作者:Peter 编辑:Pete 大家好,我是Peter~ 本文中介绍的是Categorical类型,主要实现的数据分类问题,用于承载基于整数的类别展示或编码的数据,帮助使用者获得更好的性能和内存使用...--MORE--> 背景:统计重复值 在一个Series数据中经常会出现重复值,我们需要提取这些不同的值并且分别计算它们的频数: import numpy as np import pandas as...pandas.core.series.Series Categorical类型创建 生成一个Categorical实例对象 通过例子来讲解Categorical类型的使用 subjects = ["语文...Categorical对象 主要是两种方式: 指定DataFrame的一列为Categorical对象 通过pandas.Categorical来生成 通过构造函数from_codes,前提是你必须先获得分类编码数据...,也就是one-hot编码(独热码);产生的DataFrame中不同的类别都是它的一列,看下面的例子: data4 = pd.Series(["col1","col2","col3","col4"] \

    8.6K20

    在不确定列号的情况下如何使用Vlookup查找

    最近小伙伴在收集放假前的排班数据 但是收上来的数据乱七八糟的 长下面这样 但是老板们只想看排班率 所以我们最终做的表应该是这样 需要计算出排班率 排班率=排班人数/总人数 合计之外的每一个单元格...都需要引用 除了最基础的等于=引用 我们还有一种更加万能的Vlookup+Match的方法 这样无论日期怎么变化 无论日期顺序是否能对上 我们都不用更改公式 例如A部门,2月1日的排班率应该这么写 =...,$A$2:$K$2,0),0) 排班人数里面的日期匹配 我们用Match函数动态确定列号 MATCH(B$17,$A$2:$K$2,0) 分母总人数比较简单 就是常规的Vlookup VLOOKUP...部门合计我们需要确定部门的行号即可 为防止部门变动 最好也用公式确定行号 这一块 可以有两种写法 一种是用Sum,Offset,Index,Match函数组合 =SUM(OFFSET(INDEX...然后Offset扩展到部门的所有列 最后Sum求和 日期合计同理 一种是用Sum,Indirect,Match函数组合 =SUM(INDIRECT("B"&MATCH($A18,$A$1:$A$8,0

    2.5K10

    Pandas中的数据转换

    import pandas as pd import numpy as np 一、⭐️apply函数应用 apply是一个自由度很高的函数 对于Series,它可以迭代每一列的值操作: df = pd.read_csv...bmi return x temp_data.apply(transfor, axis=1)# BMI = # apply Pandas中的axis参数=0时,永远表示的是处理方向而不是聚合方向...,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 二、⭐️矢量化字符串 为什么要用str属性 文本数据也就是我们常说的字符串,Pandas 为 Series 提供了...大家如果感觉可以的话,可以去做一些小练习~~ 【练习一】 现有一份关于字符串的数据集,请解决以下问题: (a)现对字符串编码存储人员信息(在编号后添加ID列),使用如下格式:“×××(名字):×国人...(c)将(b)中的ID列结果拆分为原列表相应的5列,并使用equals检验是否一致。

    13510
    领券