作业: 设计并训练三种神经网络使之分别逼近下列函数,精度Sm偏差小于20,Ry偏差小于1.5。...源代码 /磨削函数 //Sm=97.028*pow(Vw,-0.169)*pow(L2,-0.222)*pow(T,B1)*pow(sd,B2)*pow(a2,B3)*pow(td,B4) //B1=-
本文主要介绍神经网络万能逼近理论,并且通过PyTorch展示了两个案例来说明神经网络的函数逼近功能。...但是根据万能逼近理论,带有单隐藏的人工神经网络就能够逼近任意函数,因此可以被用于解决复杂问题。 人工神经网络 本文将只研究具有输入层、单个隐藏层和输出层的完全连接的神经网络。...万能逼近定理的核心主张是,在有足够多的隐藏神经元的情况下,存在着一组可以近似任何函数的连接权值,即使该函数不是像f(x)=x²那样可以简洁地写下来的函数。...非线性关系 神经网络之所以能够逼近任意函数,关键在于将非线性关系函数整合到了网络中。每层都可以设置激活函数实现非线性映射,换言之,人工神经网络不只是进行线性映射计算。...另外两个都涉及到指数运算,因此计算成本更高 为了展示人工神经网络的万能逼近的能力,接下来通过PyTorch实现两个案例。
神经网络可以强大到近似逼近任意函数吗?是的。有没有一种通俗易懂、图形化的方式证明呢?...近日,发现 Michael Nielsen 教授已通过可视化方式证明了神经网络逼近任意函数,在这里一起与大家分享下。首先,看一个复杂的一维非线性函数,近似它的一个简单神经网络结构可以是这样的: ?...再看一个更有意思的函数,其中的 h 含义与上面相同。 ?
BP网络函数逼近 题目要求 选择第三题 流程图 C++源代码 /// ///函数逼近第(3)小题z1=cos(xy) /// z2=sinxcosy // 运用三层...BP神经网络,节点数为2-3-2 //头文件/ #include #include #include #include
文章目录 函数逼近 题目要求 代码分析 结果分析 函数逼近 题目要求 分析函数中有6个变量,每个变量取3个值。共有取样本33333*3=729个 运用BP神经网络编程。 2....代码分析 //FBP模拟函数 //取500个样本,网络采用三层网络结点数:6-8-2 //取样本3*3*3*3*3*3=729个 / #include #include <fstream.h
BP网络函数逼近 题目选择2) 流程图如下 源代码 // //题目函数逼近(2)z=sin(x)sin(y) // ///头文件 #include #include #include #include #include #include //本BP网络采用三层神经网络,并且隐含层的结点数为...样本数量为225 /定义全局变量// double step=0.5,f,ne;//定义学习步长、平均误差 int pass=0,i,j,k; double sigmoid(double x);//作用函数为...S型函数 double DER_sigmoid (double z);//作用函数的导数 double x[225][2]={0.0};//样本输入 double X[225][3]={0}; double
Programming 课程布置的作业中要自己实现 sin(),cos(),exp() 等函数。这些函数都可以使用泰勒级数来逼近,如下图所示: ?...sin() 函数的逼近 由于用泰勒级数实现比较麻烦,需要迭代很多次。又在网上找到了一个简单又快速的实现方法。简单来说就是使用一元二次方程的公式,及一些已知点的值。如下所示: ? ? ? ?...0) y = B*x + C*x*x; else y = B*x - C*x*x; return y; } cos() 函数的逼近...=3.1415926536; x += Q; if(x > PI) x -= 2 * PI; return( mysin(x)); } exp() 函数的逼近...逼近结果如下图所示: ?
有很多人问:为什么ReLU深度网络能逼近任意函数? 对此,其有深入见解,但是在此他是简单,并用最少的数学形式来解释这个问题。...ReLU其实是分段线性的,所以有人会质疑,对于一个固定大小的神经网络,ReLU网络可能不具有更平滑+有界的激活函数(如tanh)的表达。...因为他们学习非平滑函数,ReLU网络应该被解释为以分段线性方式分离数据,而不是实际上是一个“真实”函数近似。...用ReLU激活的深层神经网络工作相似-它们将激活空间分割/折叠成一簇不同的线性区域,像一个真正复杂的折纸。...事实证明,有足够的层,你可以近似“平滑”任何函数到任意程度。 此外,如果你在最后一层添加一个平滑的激活函数,你会得到一个平滑的函数近似。
具体而言,函数逼近问题要求我们在定义明确的类中选择一个能够以特定于任务的方式匹配(或逼近)目标函数的函数。 目前,领域内可以实现函数逼近的方式有很多,比如傅里叶变换以及近年来新兴的神经网络。...这些函数逼近器在实现过程中采用的方法各有不同,效果也各有差异。 近日,reddit 上的一个热议帖子「对傅里叶变换和神经网络作为函数逼近器进行了比较」。 发帖者认为,这是一个基础性问题。...ta 提出了疑问,「如果神经网络的主要前提是全局函数逼近器,那么与傅里叶变换等其它也被证明能逼近任何函数的逼近器相比有哪些优势?为什么整个监督学习没有变成计算傅里叶系数的领域之一?」...甚至多项式也是大量函数的通用逼近器(参考魏尔施特拉斯逼近定理)。 我们回到刚才的问题,为什么是神经网络?...对此,使用随机傅里叶特征是一种解决方案,它类似于仅训练最后一层的随机单隐藏层神经网络。 对于傅里叶变换和神经网络作为函数逼近器的异同与优劣,各位读者可在留言区给出自己的观点。
先就此打住,我们回到找通用 model function 的问题,如何利用启动函数生成可以逼近一切函数的 model function?...一个变量时的 model function 根据启动函数的思考,我们发现通过叠加 n 条启动函数就可以逼近一切函数,因此我们要找的 model function 就是由 n 条启动函数组成的巨大函数。...但相应的,越复杂的神经网络越难 training。 总结 从模拟任意函数的角度,我们发现通过启动函数的无限叠加,理论上可以逼近一切函数。而面对真实世界的输入,我们可以构造矩阵计算来解决。...层次化特征学习:深度神经网络通过多层次的方式学习数据特征,底层网络学习简单的特征(如边缘和角落),而更高层的网络则基于底层特征学习更复杂的特征(如物体的部分和整体结构)。...然而,深度神经网络并非没有缺点。随着网络深度的增加,也会带来一些挑战,如梯度消失或梯度爆炸问题、过拟合、以及更高的计算成本和内存需求。
1、神经网络优化算法梯度下降算法主要用户优化单个参数的取值,而反向传播算法给出了一个高效的方式在所有参数上使用梯度下降算法,从而使神经网络模型在训练数据上的损失函数尽可能小。...反向传播算法是训练神经网络的核心算法,他可以根据定义好的损失函数优化神经网络中参数的取值,从而使神经网络在训练数据集上的损失函数达到一个最小值。...因为没有一个通用方法可以对任意损失函数直接求解最佳的参数取值,所以在实践中,梯度下降算法是最常用的神经网络算法是最常用的神经网络优化方法。...但当神经网络的参数增多之后,这样的方式首先可能导致损失函数loss的定义很长,可读性差且容易出错。...但更主要的是,当神经网络结构复杂之后定义网络结构的部分和计算损失函数大的部分可能不在同一函数中,这样通过变量这种方式计算损失函数就不方便了。
设置神经网络参数的过程就是神经网络的训练过程。只有经过有效训练的神经网络模型才可以真正地解决分类或者回归问题使用监督学习的方式设置神经网络参数需要有一个标注好的训练数据集。...监督学习最重要的思想是,在一直答案的标注数据集上,模拟给出预测结果要尽量逼近真实的答案。...最后,基于预测值和真实值之间的差距,反向传播算法会相应更新神经网络参数的取值,使得在这个batch上的神经网络模型的预测结果和真实结果更加接近。...在得到一个batch的前向传播结果以后,需要定义一个损失函数来刻画当前的预测值和真实答案之间的差距。然后通过反向传播算法来调整神经网络参数的取值是的差距可以被缩小。...下面代码定义了一个简单的损失函数,并通过tensorflow定义了反向传播算法。# 使用sigmoid函数将y转换为0~1之间的数值。
1、点击[绘图] 2、点击[网格样式] 3、点击[极坐标网格] 4、点击[绘图] 5、点击[绘制新函数] 6、点击[3] 7、点击[函数] 8、点击[cos] 9、点击[θ] 10
这种技术叫作卷积神经网络,它是在图像处理方面表现出卓越的深度神经网络的一个分支。 ? 来自ImageNet 上图是几年前赢得比赛的软件所产生的错误率,人类的错误率是5%。...卷积神经网络架构 那么,这个技术的原理是什么呢? ? 卷积神经网络表现好于其它深度神经网络架构,是得益于它独特的处理方式。...因为深度神经网络天然包含多个层级,在下一层,CNN看到的不再是像素群,而是直线和曲线群如何组成某些形状。一步步下去,直到它们构成了完整的图像。 ?...训练,可以说成是神经网络在学习,为了在你的数据集上获得好的性能,它从你的数据中学习,并进行自我更新。...开始吧,选择一个好的卷积神经网络项目,然后,得到一个好的数据。 好运! 文章最初发布在 thedatamage网站上。
本文介绍了用TensorFlow物体检测API训练神经网络、并用相应的Python脚本寻找威利的过程。...大致分为以下几步: 将图片打标签后创建数据集,其中标签注明了威利在图片中的位置,用x,y表示; 用TensorFlow物体检测API获取并配置神经网络模型; 在数据集上训练模型; 用导出的图像测试模型;...创建数据集 虽说深度学习中最重要的环节是处理神经网络,但不幸的是,数据科学家们总要花费大量时间准备训练数据。 最简单的机器学习问题最终得到的通常是一个标量(如数字检测器)或是一个分类字符串。
,有点玄学的味道,又有点知识的味道,这也太难为神经网络了。 在做这个题目之前,先想一个问题,让神经网络判断阿猫阿狗难呢,还是判断奇偶数难呢? 再回顾下非线性的概念。 开始吟唱。...办法也有,神经网络的普遍的方式行不通,我们看看能不能搞一个融入先验知识的模型结构,改造神经网络,无非是模型结构,激活,池化这些东西。...最简单的方式就是使用有周期性的激活函数,本身mod这些操作都是不可导的,但是三角函数可以简单解决,答案呼之欲出。...y=0.5*cos(π*(x-1))+0.5 这个函数的图像长这样,而且它很好理解梯度下降的本质,激活结果就是答案,没有在拐点上的位置,损失函数都会push你产生梯度,逼着你的参数去找最优解。...你围绕着神经网络设计了一系列模型结构,他们一部分可以提取知识,一部分又学到了边边角角,歪门邪道。 事情都有两面性,神经网络的演进就是这样的哲学,用人脑的方法论,抓住主要矛盾,螺旋前进。
tf.zeros( )产生全0的数组:tf.zeros([2, 3], int32) -> [[0,0,0],[0,0,0]]tf.ones( )产生全1的数组...
Reduce,这个神经网络层能够组合词语对(用词嵌入(word embedding)表示,如 GloVe)、 和/或短语,然后递归地应用此层(函数),将最后一个 Reduce 产生的结果作为句子的编码...所以我将用一个三参数函数替换双参数的 Reduce 函数,该函数的输入值为一个左子句、一个右子句和当前句的上下文状态。该状态由神经网络的第二层(称为循环跟踪器(Tracker)的单元)创建。...图 1:一个函数的图结构表示 深度神经网络本质上是有大量参数的复杂函数。深度学习的目的是通过计算以损失函数(loss)度量的偏导数(梯度)来优化这些参数。...图中的占位符变量被编译进函数,然后可以在训练集的批处理上重复运行该函数来产生输出和梯度值。 这种静态计算图(static computation graph)方法对于固定结构的卷积神经网络效果很好。...用于将每对左、右子短语表达组合成父短语(parent phrase)的实际组合函数是 TreeLSTM,它是普通循环神经网络单元 LSTM 的变型。
其核心在于利用神经网络逼近Q值函数,从而指导智能体在不同状态下选择最优动作。然而,设计一个能更好逼近Q值函数的神经网络结构并非易事,它需要综合考虑多个因素,这也成为了当前研究的热点与关键。...DQN利用神经网络强大的函数逼近能力,成功解决了这一难题。...一般采用卷积神经网络(CNN)的输入层来处理图像,因为CNN能够自动提取图像的局部特征,如边缘、纹理等,大大减少计算量。...- 调整激活函数:从传统的ReLU函数尝试使用更先进的激活函数,如Swish、GELU等,这些函数在某些场景下能提升网络的非线性表达能力,加快收敛速度。...总结与展望设计能更好逼近Q值函数的深度Q网络结构,需要深入理解问题的状态空间和动作空间特性,综合运用各种神经网络架构和优化策略。
领取专属 10元无门槛券
手把手带您无忧上云