首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

精品教学案例 | 金融贷款数据的清洗

本案例所选的数据集是来自LendingClub中统计的2018年第四季度的借贷数据。 数据集共有90112行,145列。...包含通过前一个完成的日历季度发放的所有贷款的完整贷款数据。 查看数据集中行与列数量。 dataset.shape 可见数据集共有90112行,145列。...处理完毕后查看新数据集行与列的情况以确认删除成功。...dataset_copy = dataset.copy() 使用drop()函数直接删除整行或整列数据,其中参数axis控制以列(0)或者以行(1)的形式删除,inplace代表处理完毕后是否替换这个DataFrame...该函数的主要参数是method,常见的插入方法包括:linear, time, index, values,spline等,参数不赋值时默认为线性插入法linear,即用该列数据缺失值前一个数据和后一个数据建立插值直线

4.7K21

数据导入与预处理-第5章-数据清理

数据清理概述 缺失值的检测与处理 重复值的检测与处理 异常值的检测与处理 数据清理是数据预处理中关键的一步,其目的在于剔除原有数据中的“脏” 数据,提高数据的质量,使数据具有完整性、唯一性、权威性...limit:表示可以连续填充的最大数量。...limit_direction:表示按照指定方向对连续的NaN进行填充。...| 平均数填充到指定的列 : # 缺失值补全 | 平均数填充到指定的列 # 计算A列的平均数,并保留一位小数 col_a = np.around(np.mean(na_df['A']), 1) # 计算...D列的平均数,并保留一位小数 col_d = np.around(np.mean(na_df['D']), 1) # 将计算的平均数填充到指定的列 na_df.fillna({'A':col_a, 'D

4.5K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据分享|逻辑回归、随机森林、SVM支持向量机预测心脏病风险数据和模型诊断可视化

    在美国和其他发达国家,一半的死亡是由于心血管疾病(点击文末“阅读原文”获取完整代码数据)。 简介 心血管疾病的早期预后可以帮助决定改变高危患者的生活方式,从而减少并发症。...相关视频 数据准备 来源 该数据集(查看文末了解数据获取方式)来自对居民正在进行的心血管研究。分类目标是预测患者未来是否有 10 年患冠心病 (CHD) 的风险。数据集提供了患者的信息。...对此的处理策略是保留glucose变量的缺失值,直接删除其它变量的缺失值。现在处理glucose的缺失值, # 处理glucose列 lee_a na & !...is.na # 查看glce与其它变量的线性相关性确定mice的填充策略 gcog = glm(lcse ~ .) smry(glseg) 填充,排除不重要的变量。...) sipt(mcod, pch=12) # 填充数据 mi_t <- complete fir_aa$loe <- miout$guose sum(is.na(flda)) 删除重复行 # 查看有无重复行并删除重复行

    25410

    ggplot2--R语言宏基因组学统计分析(第四章)笔记

    stat可以向数据集添加新变量。将几何映射到这些新变量是可能的 几何体:是指绘制来表示数据的几何对象;每个geom控制我们创建的打印类型。...我们可以看到,单个图层指定了数据、地图、几何、统计和位置、两个连续的位置比例和一个笛卡尔坐标系。 4.3.2.2 用默认智能作图 完整的规格非常复杂,尤其是层是最复杂的。...提供给gglot()本身或提供给各个geom以创建绘图的所有数据都包含在数据帧中。...尺度函数既可用于连续变量,也可用于分类变量。例如,在连续情况下,用刻度填充直方图或密度图;在离散情况下,比例用于填充直方图或条形图,或者在映射颜色、大小或形状时用于散点图。...公式可以是x~y,这表示将绘图分割成变量x的每个值的一行和变量y的每个值的一列。实现facet_grid(x~y)函数将生成一个矩阵,其中的行和列由x和y的可能组合组成。公式可以是x~.

    5K20

    一行代码对日期插值

    在分析时,我们为了获得完整的时间序列就需要“插入”那些丢失的日期。 举一个例子: ? 这个数据集中有5行观测,2组分类(id等于1和2)。...我们看到每个id对应的date都是有缺失的,例如从2001-01-09直接跳到了2001-01-12,当中少了10号和11号。 如何只用一行代码就高效优美地把这些缺失的日期补上呢?...首先我们建立一个CJ(cross join)数据集,这个数据集包含每个id所对应的“完整”日期。...我们看到CJ数据集中,每个id所对应的时间都被填充完整了。 (在建立CJ数据集的过程中,我们使用了seq函数来建立完整的时间序列) 接下来,我们把CJ数据集merge回原来的数据集dt。...(id, date), nomatch = NA] 结果为: ? 我们看到,原数据集存在观测的那些日期,val值都被保留,而被插入的那些日期,val是NA。

    1.4K30

    Kaggle知识点:缺失值处理

    如果该行/列中,非空元素数量小于这个值,就删除该行/列。 subset:子集。列表,元素为行或者列的索引。...回归(Regression) 基于完整的数据集,建立回归方程,或利用机器学习中的回归算法。对于包含空值的对象,将已知属性值代入方程来估计未知属性值,以此估计值来进行填充。...每个插补数据集合都用针对完整数据集的统计方法进行统计分析。 对来自各个插补数据集的结果,根据评分函数进行选择,产生最终的插补值。...譬如,你可以删除包含空值的对象用完整的数据集来进行训练,但预测时你却不能忽略包含空值的对象。另外,C4.5和使用所有可能的值填充方法也有较好的补齐效果,人工填写和特殊值填充则是一般不推荐使用的。...backfill/bfill:用下一个非缺失值去填充该缺失值。None:指定一个值去替换缺失值(缺省默认这种方式)。 axis:指定填充方向,当 axis=1 按列填充,axis=0 按行填充。

    2K20

    基本操作包的移动向量矩阵数组数据框列表因子NA字符串

    3 四.矩阵(矩阵的四则运算需要行列一致) 4.1创建矩阵 m 行5列,按列填充,遵循循环补齐原则 m <- matrix(1:20,4,5,byrow=TRUE...(m) 4.5 矩阵中的函数 diag(m)#取对角线上的数字(该函数要求矩阵行和列相同) t(m)#将行列转置 五.数组 5.1 创建数组 dim1 <- c("A1", "A2") dim2 数据框的索引 attach(mtcars)# mtcars为内置数据集,使用attach函数后,可省略"mtcars$",直接写列名 mpg hp detach(mtcars)#关闭 with(mtcars...,{mpg})#大括号里面可替换列名 mtcars[3]#输出数据集mtcars的第3列 subset(data, age >= 30, select = c(“name”, “age”)#在数据框data...(worldphones) total 数据框添加列 七.列表 7.1创建列表 a <- 1:20 b <- matrix(1:24,4,6

    18130

    数据分享|逻辑回归、随机森林、SVM支持向量机预测心脏病风险数据和模型诊断可视化|附代码数据

    数据准备 来源该数据集 来自对居民正在进行的心血管研究。分类目标是预测患者未来是否有 10 年患冠心病 (CHD) 的风险。数据集提供了患者的信息。它包括超过 4,000 条记录和 15 个属性。...对此的处理策略是保留glucose变量的缺失值,直接删除其它变量的缺失值。现在处理glucose的缺失值,# 处理glucose列lee_a na & !...is.na# 查看glce与其它变量的线性相关性确定mice的填充策略gcog = glm(lcse ~ .)smry(glseg)填充,排除不重要的变量。...sipt(mcod, pch=12)# 填充数据mi_t na(flda))删除重复行# 查看有无重复行并删除重复行...数据获取在下面公众号后台回复“心脏病风险数据”,可获取完整数据。

    1.1K00

    收藏|Pandas缺失值处理看这一篇就够了!

    把数据不完全的个案标记后,将完整的数据个案赋予不同的权重,个案的权重可以通过logistic或probit回归求得。 如果解释变量中存在对权重估计起决定行因素的变量,那么这种方法可以有效减小偏差。...每个插补数据集合都用针对完整数据集的统计方法进行统计分析。 对来自各个插补数据集的结果,根据评分函数进行选择,产生最终的插补值。...2、查看缺失值的所以在行 以最后一列为例,挑出该列缺失值的行 df[df['Physics'].isna()] ?...问题与练习 问题 【问题一】 如何删除缺失值占比超过25%的列?...练习 【练习一】现有一份虚拟数据集,列类型分别为string/浮点/整型,请解决如下问题。

    3.8K41

    数据分析之Pandas缺失数据处理

    把数据不完全的个案标记后,将完整的数据个案赋予不同的权重,个案的权重可以通过logistic或probit回归求得。 如果解释变量中存在对权重估计起决定行因素的变量,那么这种方法可以有效减小偏差。...每个插补数据集合都用针对完整数据集的统计方法进行统计分析。 对来自各个插补数据集的结果,根据评分函数进行选择,产生最终的插补值。...2、查看缺失值的所以在行 以最后一列为例,挑出该列缺失值的行 df[df['Physics'].isna()] ?...问题与练习 问题 【问题一】 如何删除缺失值占比超过25%的列?...练习 【练习一】现有一份虚拟数据集,列类型分别为string/浮点/整型,请解决如下问题。

    1.7K20

    数据分享|逻辑回归、随机森林、SVM支持向量机预测心脏病风险数据和模型诊断可视化|附代码数据

    数据准备  来源 该数据集 ( 查看文末了解数据获取方式 ) 来自对居民正在进行的心血管研究。分类目标是预测患者未来是否有 10 年患冠心病 (CHD) 的风险。数据集提供了患者的信息。...对此的处理策略是保留glucose变量的缺失值,直接删除其它变量的缺失值。现在处理glucose的缺失值, # 处理glucose列 lee_a na & !...is.na # 查看glce与其它变量的线性相关性确定mice的填充策略 gcog = glm(lcse ~ .) smry(glseg) 填充,排除不重要的变量。...) sipt(mcod, pch=12) # 填充数据 mi_t <- complete fir_aa$loe <- miout$guose sum(is.na(flda)) 删除重复行 # 查看有无重复行并删除重复行...,可以看出预测结果的类别数量分布非常不均衡 sum sum(TeYaHD == 0) 针对这一现象,需要采取方法平衡数据集。

    71330

    数据分享|逻辑回归、随机森林、SVM支持向量机预测心脏病风险数据和模型诊断可视化

    数据准备 来源 该数据集(查看文末了解数据获取方式)来自对居民正在进行的心血管研究。分类目标是预测患者未来是否有 10 年患冠心病 (CHD) 的风险。数据集提供了患者的信息。...对此的处理策略是保留glucose变量的缺失值,直接删除其它变量的缺失值。现在处理glucose的缺失值, # 处理glucose列 lee_a na & !...is.na # 查看glce与其它变量的线性相关性确定mice的填充策略 gcog = glm(lcse ~ .) smry(glseg) 填充,排除不重要的变量。...) sipt(mcod, pch=12) # 填充数据 mi_t <- complete fir_aa$loe <- miout$guose sum(is.na(flda)) 删除重复行 # 查看有无重复行并删除重复行...,可以看出预测结果的类别数量分布非常不均衡 sum sum(TeYaHD == 0) 针对这一现象,需要采取方法平衡数据集。

    10310

    逻辑回归、随机森林、SVM支持向量机预测心脏病风险数据和模型诊断可视化

    数据准备 来源 该数据集来自对居民正在进行的心血管研究。分类目标是预测患者未来是否有 10 年患冠心病 (CHD) 的风险。数据集提供了患者的信息。它包括超过 4,000 条记录和 15 个属性。...对此的处理策略是保留glucose变量的缺失值,直接删除其它变量的缺失值。现在处理glucose的缺失值, # 处理glucose列 lee_a na & !...is.na # 查看glce与其它变量的线性相关性确定mice的填充策略 gcog = glm(lcse ~ .) smry(glseg) 填充,排除不重要的变量。...) sipt(mcod, pch=12) # 填充数据 mi_t <- complete fir_aa$loe <- miout$guose sum(is.na(flda)) 删除重复行 # 查看有无重复行并删除重复行...,可以看出预测结果的类别数量分布非常不均衡 sum sum(TeYaHD == 0) 针对这一现象,需要采取方法平衡数据集。

    2.4K30

    缺失值处理,你真的会了吗?

    missingno库--矩阵图、条形图、热图、树状图 mssingno库提供了一个灵活且易于使用的缺失数据可视化和实用程序的小工具集,可以快速直观地总结数据集的完整性。...n : int, default 0过滤后的数据格式中包含的最大列数。 P : int, default 0过滤后的数据框中列的最大填充百分比。...how : {'any', 'all'},default 'any' 确定是否从DataFrame中删除了行或列至少有一个NA或全部NA。* 'any':如果有任何NA值,删除行或列。...* 'all':如果所有的值都是NA,删除行或列。 axis : {0 or 'index', 1 or 'columns'}, default 0 确定包含缺失值的行或列是否为移除。...补全 占比一般,30%-80%时,将缺失值作为单独的⼀个分类如果特征是连续的,则其他已有值分箱如果特征是分类的,考虑其他分类是否需要重分箱 等深分箱法(统一权重法): 将数据集按记录(行数)分箱,每箱具有相同的记录数

    1.6K30

    数据分享|逻辑回归、随机森林、SVM支持向量机预测心脏病风险数据和模型诊断可视化|附代码数据

    数据准备 来源该数据集来自对居民正在进行的心血管研究。分类目标是预测患者未来是否有 10 年患冠心病 (CHD) 的风险。数据集提供了患者的信息。它包括超过 4,000 条记录和 15 个属性。...对此的处理策略是保留glucose变量的缺失值,直接删除其它变量的缺失值。现在处理glucose的缺失值,# 处理glucose列lee_a na & !...is.na# 查看glce与其它变量的线性相关性确定mice的填充策略gcog = glm(lcse ~ .)smry(glseg)填充,排除不重要的变量。...mice%in%  m=5,  "pmm", mai = 50, sd=2333, pint= FALSE)#查看填充结果smr(mc_od)# 查看原始数据和插补后的数据分布情况epot(mi_md)...sipt(mcod, pch=12)# 填充数据mi_t na(flda))删除重复行# 查看有无重复行并删除重复行

    1K00

    数据分析|R-缺失值处理

    数据中往往会有各种缺失值,异常值,错误值等,今天先介绍一下如何处理缺失值,才能更好的数据分析,更准确高效的建模。...左侧第一列,’42’代表有42条数据无缺失值,第一个’9’代表9条数据Dream和NonD同时缺失。最后一行返回的就是每一个变量(列)对应的缺失数目,38为一共有多少缺失值。下图同样的意思。 ?...三 处理缺失值 当充分了解了缺失值的情况后,可以根据数据量的大小,以及某一列是否为重要的预测作用变量,对数据集中的NA行和某些NA列进行处理。...3.1 删除缺失值 1)删除数据集中所有含有NA的行和列 sleep_noNA na.omit(sleep) sleep_noNA 的效果...2)删除所有含有NA的列 na_flag na(sleep), 2, sum) sleep[,which(na_flag == 0)] 3)删除所有含有NA的行 na_flag

    1.1K20

    没有完美的数据插补法,只有最适合的

    从中选择最靠谱的预测变量,并将其用于回归方程中的自变量。缺失数据的变量则被用于因变量。自变量数据完整的那些观测行被用于生成回归方程;其后,该方程则被用于预测缺失的数据点。...在迭代过程中,我们插入缺失数据变量的值,再使用所有数据行来预测因变量。重复这些步骤,直到上一步与这一步的预测值几乎没有什么差别,也即收敛。 该方法“理论上”提供了缺失数据的良好估计。...多重插补 1、插补:将不完整数据集缺失的观测行估算填充m次(图中m=3)。请注意,填充值是从某种分布中提取的。模拟随机抽取并不包含模型参数的不确定性。...更好的方法是采用马尔科夫链蒙特卡洛模拟(MCMC,Markov Chain Monte Carlo Simulation)。这一步骤将生成m个完整的数据集。...2、分析:分别对(m个)每一个完整数据集进行分析。 3、合并:将m个分析结果整合为最终结果。 ?

    2.6K50

    python数据处理 tips

    conda install pandas 我已经修改了著名的泰坦尼克号数据集从Kaggle演示的目的,你可以在这里下载数据集:https://github.com/chingjunetao/medium-article...df.head()将显示数据帧的前5行,使用此函数可以快速浏览数据集。 删除未使用的列 根据我们的样本,有一个无效/空的Unnamed:13列我们不需要。我们可以使用下面的函数删除它。...如果我们在读取数据时发现了这个问题,我们实际上可以通过将缺失值传递给na_values参数来处理这个缺失值。结果是一样的。 现在我们已经用空值替换了它们,我们将如何处理那些缺失值呢?...解决方案1:删除样本(行)/特征(列) 如果我们确信丢失的数据是无用的,或者丢失的数据只是数据的一小部分,那么我们可以删除包含丢失值的行。 在统计学中,这种方法称为删除,它是一种处理缺失数据的方法。...如果我们确信这个特征(列)不能提供有用的信息或者缺少值的百分比很高,我们可以删除整个列。这在进行统计分析时非常有用,因为填充缺失值可能会产生意外或有偏差的结果。

    4.4K30

    【数据处理包Pandas】数据载入与预处理

    txt 文件:是 Windows 操作系统上附带的一种文本格式,文件以 .txt 为后缀。...thresh 阈值设定,当行列中非空值的数量少于给定的值就将该行丢弃 subset 表示进行去重的列/行,如:subset=[ ’a’ ,’d’],即丢弃子列 a d 中含有缺失值的行 inplace...limit (对于前向和后向填充)可以连续填充的最大数量 (1)用单个值填充 df.fillna(0) (2)从前向后填充(forward-fill) df.fillna(method='ffill...默认为 None,表示检查所有列。 keep:可选参数,指定如何处理重复值。可选值为 ‘first’、‘last’ 和 False。...默认为 None,表示检查所有列。 keep:可选参数,指定如何处理重复值。可选值为 ‘first’、‘last’ 和 False。

    11810
    领券