我近期在研究一个 NLP 项目,根据项目的要求,需要能够通过设计算法和模型处理单词的音节 (Syllables),并对那些没有在词典中出现的单词找到其在词典中对应的押韵词(注:这类单词类似一些少见的专有名词或者通过组合产生的新词,比如 Brexit,是用 Britain 和 exit 组合在一起创造出来表示英国脱欧的新词)。在这两个任务中,能够对单词的发音进行预测是非常有必要的。本文详细记录我解决该问题的过程,希望能够对初学者和具有一定经验的朋友有所帮助。本文代码实现均基于 Python 3 和 Keras 框架。现在让我们开始吧!
作者:Yi Ren、Yangjun Ruan、Xu Tan、Tao Qin、Sheng Zhao、Zhou Zhao、Tie-Yan Liu
近日谷歌团队发布了一篇关于语音识别的在线序列到序列模型,该模型可以实现在线实时的语音识别功能,并且对来自不同扬声器的声音具有识别功能。 以下内容是 AI 科技评论根据论文内容进行的部分编译。 论文摘要:生成模型一直是语音识别的主要方法。然而,这些模型的成功依赖于难以被非职业者使用的复杂方法。最近,深入学习方面的最新创新已经产生了一种替代的识别模型,称为序列到序列模型。这种模型几乎可以匹配最先进的生成模型的准确性。该模型在机器翻译,语音识别,图像标题生成等方面取得了相当大的经验成果。尽管这些模型易于训练,因为
---- 新智元报道 编辑:LRS 【新智元导读】最近微软全华班发布了一个新模型NaturalSpeech,在语音合成领域首次达到人类水平,人耳难分真假。 现在很多视频都不采用人类配音,而是让「佟掌柜」、「东北大哥」等角色友情客串,在读起文本来还真有点意思。 相比之前机械化的电子音来说,文本转语音(text to speech, TTS)技术近年来取得了很大进展,但目前来说,合成的语音听起来仍然是机械发声,和人类的语音还有一定差距。 问题来了:怎么才能判断一个TTS系统达到了人类水平? 最近微软
数据方差相同的时候,一次判别就可以,如左图所示;但如果方差差别较大,就是一个二次问题了,像右图那样。
十一结束,假期开工返乡潮仍在继续。就在昨日,一则视频刷爆朋友圈。 视频里,北京、广州、上海、成都、武汉的火车站都相继开通自助“刷脸”进站通道。 乘客惊呼“连化妆和美瞳都能识别出来,太神奇!” 其实,刷脸早已不是什么新鲜事了!我们今天来聊一个更好玩的事儿,那就是你说话,AI给你配表情。让你做个真正的虚拟人儿。 文章略枯燥,技术性的话术有点多,普通小白估计看起来够呛。技术宅们,上! 翻译 | AI科技大本营(rgznai100) 参与 | shawn SIGGRAPH 2017曾经收录过英伟达的一篇
判别分析包括可用于分类和降维的方法。线性判别分析(LDA)特别受欢迎,因为它既是分类器又是降维技术。二次判别分析(QDA)是LDA的变体,允许数据的非线性分离。最后,正则化判别分析(RDA)是LDA和QDA之间的折衷。
机器之心报道 编辑:rome rome DALL-E 已经能够很好地从文本生成图像,那么如何高效地实现语音合成呢?本文带你看微软最新推出的语音合成模型 ——VALL-E,它的效果将惊掉你的下巴。 近十年间随着神经网络和端到端建模的发展,语音合成技术取得了巨大突破。级联的文本到语音(TTS)系统通常利用声学模型 pipeline 和梅尔频谱作为中间表示的声码器。先进的 TTS 系统可以从单个或多个 speaker 合成高质量的语音,但仍需要高质量的 “干净” 数据。从网络上抓取的大规模数据无法满足要求,并且会
千平 发自 凹非寺 量子位 出品 | 公众号 QbitAI △ 《爱情麻辣烫》剧照,图片来自网络 “清晨,我推开房门,一个洁白的世界映入我眼帘……” 电影《爱情麻辣烫》里有段情节:高圆圆朗读课文的声音
机器之心专栏 本专栏由机器之心SOTA!模型资源站出品,每周日于机器之心公众号持续更新。 本专栏将逐一盘点自然语言处理、计算机视觉等领域下的常见任务,并对在这些任务上取得过 SOTA 的经典模型逐一详解。前往 SOTA!模型资源站(sota.jiqizhixin.com)即可获取本文中包含的模型实现代码、预训练模型及 API 等资源。 本文将分 2 期进行连载,共介绍 19 个在语音合成任务上曾取得 SOTA 的经典模型。 第 1 期:BLSTM-RNN、WaveNet、SampleRNN、Char2Wav
其中,声学模型主要描述发音模型下特征的似然概率,语言模型主要描述词间的连接概率;发音词典主要是完成词和音之间的转换。 接下来,将针对语音识别流程中的各个部分展开介绍。
https://blog.csdn.net/coming_is_winter/article/details/72850511 https://blog.csdn.net/zouxy09/article/details/7929348/
作者:张大威,TEG 安全平台部。2013年加入安全平台部,从事多媒体信息安全、智能安全领域,目前在色情语音识别和藏维语识别领域,利用深度学习技术构建恶意音视频主动识别过滤体系。 鉴黄小趣事作者:“做视频分类时,有时会忘记控制音量。有次被旁边的组长听到了,他就在部门的大群里面吐槽说他都没法工作了,周围都是“嗯...啊...哦...”的声音,自己都快有反应了。。。这件事被公司的同事笑了好久。” 基于音频指纹的涉黄涉暴视频检测技术前言当今人们在社交软件上发布的视频数以亿计,其中不乏大量的恶意视频,涉及政治、
(1)04 隐马尔可夫模型 (HMM) :https://blog.csdn.net/u014365862/article/details/105007027 (2)一个隐马尔科夫模型的应用实例:中文分词: https://blog.csdn.net/u014365862/article/details/54891582
时至今日,语音识别已经有了突破性进展。2017年8月20日,微软语音识别系统错误率由5.9%降低到5.1%,可达到专业速记员的水平;国内语音识别行业的佼佼者科大讯飞的语音听写准确率则达到了95%,表现强悍。国内诸如阿里、百度、腾讯等大公司,也纷纷发力语音识别,前景一片看好。
人工生成的人类语音被称为语音合成。这种基于机器学习的技术适用于文本到语音转换、音乐生成、语音生成、启用语音的设备、导航系统以及视障人士的可访问性。
还记得我们前几天发出文章《百度超谷歌跃升全球第二,硬核语音技术成抢夺智能音箱“C位”的王牌》吗?本篇文章我们将讲述 2019年深度学习语音合成的一些进展,其中有多篇工作来自百度研究院或百度硅谷人工智能研究院。
首先,如下图所示是一个常见的语音识别框架图,语音识别系统的模型通常由声学模型和语言模型两部分组成,分别对应于语音到音节概率的计算和音节到字概率的计算。这里我们要探讨的GMM-HMM模型属于其中的声学模型。
本文主要介绍 CTC 算法的基本概念,可能应用的领域,以及在结合神经网络进行 CTC 算法的计算细节。
INTERSPEECH 是语音科学和技术领域最大、最全面的国际学术会议。INTERSPEECH 2019 将在奥地利第二大城市格拉茨(Graz)举办。在 INTERSPEECH 会议期间,来自全球学术界和产业界的研究人员齐聚一堂,讨论语音领域的新技术,包括语音合成、语音识别、语音增强这些细分领域。在会议上展示的研究成果代表着语音相关领域的最新研究水平和未来的发展趋势。恰逢 INTERSPEECH 20 周年,主办方透露在会议日程上将会出现一些别出心裁的设计,即将参会的同行们可以期待一下。
转自:https://www.zhihu.com/question/20398418/answer/18080841
语音的基本概念 语音是一个复杂的现象。我们基本上不知道它是如何产生和被感知的。我们最基础的认识就是语音是由单词来构成的,然后每个单词是由音素来构成的。但事实与我们的理解大相径庭。语音是一个动态过程,不
爱丁堡大学课程(全英文,有能力的推荐学习一遍):https://speech.zone/courses/speech-synthesis/
AI科技评论按:百度前段时间推出了语音合成应用 Deep Voice,AI科技评论也于近日回顾了百度在语音识别及语音合成的研究历程《从SwiftScribe说起,回顾百度在语音技术的七年积累》,但对于不了解TTS的同学们来说,要理解 Deep Voice 同样困难。 而近日,百度首席科学家吴恩达在 Twitter 上转发了MIT Dhruv Parthasarathy 的一篇medium 文章,其详细阐述了Baidu Deep Voice 的具体原理及操作方法。吴恩达表示,“如果你是语音合成的新手,那么这篇
上篇文章详细阐述了R-CNN网络模型,本篇本章本来准备阐述Fast-RCNN模型的,介于SPP-Net模型有许多技巧性的技术可以在不同模型上使用,所以本篇详细分析下SPP-Net
AI 科技评论按:语音识别技术历史悠久,早在上世纪 50 年代,贝尔研究所就研究出了可以识别十个英文数字的简单系统。从上世纪 70 年代起,传统的基于统计的 HMM 声学模型,N 元组语言模型的发明,已经使得语音识别技术可以在小规模词汇量上使用。在新世纪伊始,GMM-HMM 模型的序列鉴别性训练方法的提出又进一步提升了语音识别的准确率。最近 5-10 年间,随着深度学习的快速发展,算力的快速增长,数据量的急速扩张,深度学习开始大规模应用于语音识别领域并取得突破性进展,深度模型已经可以在干净标准的独白类音频上达到 5% 以下的错词率。此外,端到端的模型可以轻松的将各种语言揉合在一个模型中,不需要做额外的音素词典的准备,这将大大推动业界技术研究与应用落地的进度。
雷锋网 AI 科技评论按:语音识别技术历史悠久,早在上世纪 50 年代,贝尔研究所就研究出了可以识别十个英文数字的简单系统。从上世纪 70 年代起,传统的基于统计的 HMM 声学模型,N 元组语言模型的发明,已经使得语音识别技术可以在小规模词汇量上使用。在新世纪伊始,GMM-HMM 模型的序列鉴别性训练方法的提出又进一步提升了语音识别的准确率。最近 5-10 年间,随着深度学习的快速发展,算力的快速增长,数据量的急速扩张,深度学习开始大规模应用于语音识别领域并取得突破性进展,深度模型已经可以在干净标准的独白类音频上达到 5% 以下的错词率。此外,端到端的模型可以轻松的将各种语言揉合在一个模型中,不需要做额外的音素词典的准备,这将大大推动业界技术研究与应用落地的进度。
翻译 | AI科技大本营(rgznai100) 2011 年 10 月,在 iPhone 4S 的发布会,Siri 作为首款语音助手,惊艳亮相,然而 6 年过后,Siri 却依旧不温不火,为此,苹果在最新的 iOS 11 中为 Siri 增加了更多的新功能,而且 Siri 合成的声音也更加自然流畅。 近日,苹果在自家的“Apple Machine Learning Journal”的博客上发表了三篇论文,详细解释了 Siri 声音背后有关深度学习的技术细节。其中,《Deep Learning for
这一篇文章其实是参考了很多篇文章之后写出的一篇对于语言模型的一篇科普文,目的是希望大家可以对于语言模型有着更好地理解,从而在接下来的NLP学习中可以更顺利的学习. 1:传统的语音识别方法: 这里我们
在线语音通话已经成为人们日常生活的一部分,但数据包常以错误的顺序或错误的时间到达另一端,有时个别数据包甚至可能会完全丢失。这不仅导致通话质量降低,而且是音频和视频传输都普遍存在的问题。
这篇文章介绍了WaveNet,一种原始音频波形的深度生成模型。我们展示了WaveNets能够生成模仿任何人类语音的语音,并且听起来比现有的最佳文本语音系统更自然,与人类表现的差距缩小了50%以上。
语音识别就是把语音变成文字的过程,相信大家在平时生活也已经用到过一些语音识别的场景,比如说语音输入法、地图产品的语音输入。近年来,随着互联网的发展,各种音频数据和文本数据得到不断积累和丰富,CPU、GPU硬件的发展,以及深度学习算法大规模的应用,语音识别技术的应用开始获得大规模的商业化拓展。
今天,腾讯“数智人工厂”正式开工! 如何低成本低门槛生成数智人? 让我们“进厂”一起看看: 深圳市腾讯公仔厂 一家全球领先的综合公仔厂商 生产的企鹅公仔,驰名中外 公仔很火,步履不停的鹅 亦有新征途 今天,腾讯用黑科技建的“新厂” ——“数智人工厂” 剪彩开工! 从前,鹅制作一只“公仔分身” 需要选材、剪裁、缝纫、填充 等一系列流程 现在,通过“数智人工厂” 鹅用一段3分钟的口播视频 就能生成自己的“数字分身” “数字分身”可以用在很多场景 如短视频讲解、新闻播报、直播带货等 很忙的鹅仔工作
现实生活中常常会有这样的问题:缺乏足够的先验知识,因此难以人工标注类别或进行人工类别标注的成本太高。很自然地,我们希望计算机能代我们完成这些工作,或至少提供一些帮助。根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称之为无监督学习。
1966 年,一个由 MAD-SLIP 程式语言编写,在 36 位元架构的 IBM 7094 大型电脑上运作,所有程式编码仅有 200 行左右的聊天机器人,被 MIT 的德裔电脑科学家 Joseph Weizenbaum 发明出来,名叫“Eliza”。
AI科技评论按:百度前段时间推出了语音合成应用 Deep Voice,AI科技评论也于近日回顾了百度在语音识别及语音合成的研究历程《从SwiftScribe说起,回顾百度在语音技术的七年积累》,但对于不了解TTS的同学们来说,要理解 Deep Voice 同样困难。 而前百度首席科学家吴恩达在 Twitter 上转发了MIT Dhruv Parthasarathy 的一篇medium 文章,其详细阐述了Baidu Deep Voice 的具体原理及操作方法。吴恩达表示,“如果你是语音合成的新手,那么这篇
功能磁共振成像 (fMRI) 已经彻底改变了认知神经科学,但方法上的障碍限制了研究 结果的普遍性。Neuroscout,一个端到端分析自然功能磁共振成像数据 的平台, 旨在促进稳健和普遍化的研究推广。Neuroscout利用最先进的机器学习模型来自动注释来自使用自然刺激的数十个功能磁共振成像研究中的刺激—— 比如电影和叙事——使研究人员能够轻松地跨多个生态有效的数据集测试神经科学假设。此外,Neuroscout建立在开放工具和标准的强大生态系统上,提供易于使用的分析构建器和全自动执行引擎, 以减少可重复研究的负担。通过一系列的元分析案例研究,验证了自动特征提取方法,并证明了其有支持更稳健的功能磁共振成像研究的潜力。由于其易于使用和高度自动化,Neuroscout克服了自然分析中常见出现的建模问题,并易于在数据集内和跨数据集进行规模分析,可以自利用一般的功能磁共振成像研究。
上一篇文章的留言中,薇薇同学提到了语音合成技术,这篇文章尝试对语音合成技术的技术原理进行介绍。
30岁那年,一次毁灭性的中风,让一位47岁加拿大女性几乎完全瘫痪,此后失语18年。
机器之心原创 作者:李亚洲 近年来,随着深度神经网络的应用,计算机理解自然语音能力有了彻底革新,例如深度神经网络在语音识别、机器翻译中的应用。但是,使用计算机生成语音(语音合成(speech synthesis)或文本转语音(TTS)),仍在很大程度上基于所谓的拼接 TTS(concatenative TTS)。而这种传统的方法所合成语音的自然度、舒适度都有很大的缺陷。深度神经网络,能否像促进语音识别的发展一样推进语音合成的进步?这也成为了人工智能领域研究的课题之一。 2016 年,DeepMind 提
HOG特征描述子的定义: locally normalised histogram of gradient orientation in dense overlapping grids,即局部归一化的梯度方向直方图,是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征。 Histogram of Oriented Gradient descriptors provide a dense overlapping description of image regions,即统计图像局部区域的梯度方向信息来作为该局部图像区域的表征。
androidauthority AI 科技评论消息,今日百度研究院在官网上正式推出了 Deep Voice:实时语音合成神经网络系统(Real-Time Neural Text-to-Speech for Production),Twitter 上也同步更新了消息,目前论文也已经投递 ICML 2017。 本系统完全依赖深度神经网络搭建而成,最大的优势在于能够满足实时转换的要求。在以前,音频合成的速度往往非常慢,需要花费数分钟到数小时不等的时间才能转换几秒的内容,而现在,百度研究院已经能实现实时合成,
工欲善其事必先利其器 首先素数是什么? 素数就是一个数除了1和他本身没有其他因数的数叫做质数。 合数即为对立概念 当然,1既不是素数也不是合数 素因子是什么? 由欧拉函数得到结论: 每一个合数都可以写成几个素数相乘的形式, 这些素数即为该合数的质因子
语言是一个两层的层级系统,在语音系统向语义系统跨越的过程中,音位作为语言中能够区别意义的最小的语音单位一直都受到语言学家和心理语言学研究者的关注,其在词汇存取过程中的作用一直是众多研究者争论的焦点。传统语言学理论中将音位视为词汇存取的关键单位,但这一观点不断受到其他语言学家与心理学家的挑战。作者对以往研究中存在的两种主要观点进行了分析,并分别针对性的反驳。
5月21日,腾讯AI虚拟人艾灵再秀出新技能,首次展示AI作诗、AI书法等国风才艺,并与青年歌手白举纲跨次元合作,共同演唱国风新歌《百川千仞》。
这篇文章发表在 ICML 2021 会议上,当时的 TTS(test-to-speech)工作效果好的都以两阶段的为主,端到端的工作效果一般。
机器之心专栏 本专栏由机器之心SOTA!模型资源站出品,每周日于机器之心公众号持续更新。 本专栏将逐一盘点自然语言处理、计算机视觉等领域下的常见任务,并对在这些任务上取得过 SOTA 的经典模型逐一详解。前往 SOTA!模型资源站(sota.jiqizhixin.com)即可获取本文中包含的模型实现代码、预训练模型及 API 等资源。 本文将分 3 期进行连载,共介绍 17 个在语音识别任务上曾取得 SOTA 的经典模型。 第 1 期:NNLM、RNNLM、LSTM-RNNLM、Bi-lstm、Bi-RN
语言感知是人类语言处理复杂性的一个重要方面,同时它也是表达声音形式的主要方式,这里我们所指的语言特指的是以声音形式让我们感知又被我们传递的口语。我们都知道口语对社会交往至关重要。同时,在语言研究中口语也是第一性的,口语是语言研究中最重要的语言材料。但在当前研究中,语言研究尤其是神经语言学或心理语言学的研究其重点都放在语言的系统构成及其成分(语音、语义和句法等)等。对口语的神经机制的研究是较为缺乏的。
作者提出了一种全卷积字符到谱图的框架,可以实现完全并行计算。该框架是基于注意力的序列到序列模型。这个模型在LibriSpeech ASR数据集上进行训练。
领取专属 10元无门槛券
手把手带您无忧上云