首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    学界 | 谷歌团队提出应用于噪声语音识别的在线序列到序列模型

    近日谷歌团队发布了一篇关于语音识别的在线序列到序列模型,该模型可以实现在线实时的语音识别功能,并且对来自不同扬声器的声音具有识别功能。 以下内容是 AI 科技评论根据论文内容进行的部分编译。 论文摘要:生成模型一直是语音识别的主要方法。然而,这些模型的成功依赖于难以被非职业者使用的复杂方法。最近,深入学习方面的最新创新已经产生了一种替代的识别模型,称为序列到序列模型。这种模型几乎可以匹配最先进的生成模型的准确性。该模型在机器翻译,语音识别,图像标题生成等方面取得了相当大的经验成果。尽管这些模型易于训练,因为

    08

    干货 | 对端到端语音识别网络的两种全新探索

    AI 科技评论按:语音识别技术历史悠久,早在上世纪 50 年代,贝尔研究所就研究出了可以识别十个英文数字的简单系统。从上世纪 70 年代起,传统的基于统计的 HMM 声学模型,N 元组语言模型的发明,已经使得语音识别技术可以在小规模词汇量上使用。在新世纪伊始,GMM-HMM 模型的序列鉴别性训练方法的提出又进一步提升了语音识别的准确率。最近 5-10 年间,随着深度学习的快速发展,算力的快速增长,数据量的急速扩张,深度学习开始大规模应用于语音识别领域并取得突破性进展,深度模型已经可以在干净标准的独白类音频上达到 5% 以下的错词率。此外,端到端的模型可以轻松的将各种语言揉合在一个模型中,不需要做额外的音素词典的准备,这将大大推动业界技术研究与应用落地的进度。

    04

    博客 | 论文解读:对端到端语音识别网络的两种全新探索

    雷锋网 AI 科技评论按:语音识别技术历史悠久,早在上世纪 50 年代,贝尔研究所就研究出了可以识别十个英文数字的简单系统。从上世纪 70 年代起,传统的基于统计的 HMM 声学模型,N 元组语言模型的发明,已经使得语音识别技术可以在小规模词汇量上使用。在新世纪伊始,GMM-HMM 模型的序列鉴别性训练方法的提出又进一步提升了语音识别的准确率。最近 5-10 年间,随着深度学习的快速发展,算力的快速增长,数据量的急速扩张,深度学习开始大规模应用于语音识别领域并取得突破性进展,深度模型已经可以在干净标准的独白类音频上达到 5% 以下的错词率。此外,端到端的模型可以轻松的将各种语言揉合在一个模型中,不需要做额外的音素词典的准备,这将大大推动业界技术研究与应用落地的进度。

    03

    Neuroscout:可推广和重复利用的fMRI研究统一平台

    功能磁共振成像 (fMRI) 已经彻底改变了认知神经科学,但方法上的障碍限制了研究 结果的普遍性。Neuroscout,一个端到端分析自然功能磁共振成像数据 的平台, 旨在促进稳健和普遍化的研究推广。Neuroscout利用最先进的机器学习模型来自动注释来自使用自然刺激的数十个功能磁共振成像研究中的刺激—— 比如电影和叙事——使研究人员能够轻松地跨多个生态有效的数据集测试神经科学假设。此外,Neuroscout建立在开放工具和标准的强大生态系统上,提供易于使用的分析构建器和全自动执行引擎, 以减少可重复研究的负担。通过一系列的元分析案例研究,验证了自动特征提取方法,并证明了其有支持更稳健的功能磁共振成像研究的潜力。由于其易于使用和高度自动化,Neuroscout克服了自然分析中常见出现的建模问题,并易于在数据集内和跨数据集进行规模分析,可以自利用一般的功能磁共振成像研究。

    04
    领券