首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何提升ctr和cvr

在云计算领域,有多种方法可以提高 CTR(点击率)和 CVR(转化率)。以下是一些建议:

1. 优化网站设计

网站设计对于提高 CTR 和 CVR 至关重要。以下是一些建议:

  • 使用简洁的布局和清晰的导航,使用户能够轻松地找到他们感兴趣的内容。
  • 使用醒目的按钮和链接,使用户能够轻松地点击和进行操作。
  • 使用视觉元素,如图片和视频,来吸引用户的注意力。
  • 使用响应式设计,确保网站在不同设备上都能正常显示。

2. 优化 SEO

搜索引擎优化(SEO)是提高 CTR 的重要方法之一。以下是一些建议:

  • 使用关键词研究工具,如 Google Keyword Planner,来确定最常用的关键词。
  • 在网站的元标签中使用这些关键词,以便搜索引擎能够识别它们。
  • 使用内部和外部链接,以提高网站的可见性和权威性。
  • 使用高质量的内容,如博客文章和白皮书,来吸引用户的注意力。

3. 使用社交媒体

社交媒体是一种非常有效的方式,可以提高 CTR 和 CVR。以下是一些建议:

  • 使用 Facebook、Twitter、LinkedIn 和其他社交媒体平台来分享您的内容。
  • 与其他社交媒体用户互动,回答问题和提供建议。
  • 使用社交媒体广告来扩大您的受众。

4. 使用广告

广告是一种非常有效的方式,可以提高 CTR 和 CVR。以下是一些建议:

  • 使用 Google Ads、Facebook Ads、LinkedIn Ads 和其他广告平台来投放广告。
  • 使用目标广告,以便只向感兴趣的用户展示广告。
  • 使用转化跟踪,以便跟踪用户的行为并优化广告投放。

5. 使用数据分析

数据分析是一种非常有效的方式,可以提高 CTR 和 CVR。以下是一些建议:

  • 使用 Google Analytics、Facebook Insights 和其他数据分析工具来跟踪用户行为。
  • 使用数据分析来确定哪些内容最受欢迎,以便进行优化和改进。
  • 使用数据分析来确定哪些广告最有效,以便进行优化和改进。

6. 提供高质量的内容

高质量的内容是提高 CTR 和 CVR 的关键。以下是一些建议:

  • 使用原创内容,以便吸引用户的注意力。
  • 使用简洁的语言和清晰的格式,以便用户能够轻松地理解内容。
  • 使用视觉元素,如图片和视频,来吸引用户的注意力。
  • 使用相关的例子和案例研究,以便用户能够更好地理解内容。

7. 提供快速的加载速度

快速的加载速度是提高 CTR 和 CVR 的关键。以下是一些建议:

  • 使用 CDN(内容分发网络)来加速网站的加载速度。
  • 使用图片压缩和优化工具,以便减少图片的大小和带宽。
  • 使用 CSS 和 JavaScript 压缩和合并工具,以便减少文件的大小和请求次数。
  • 使用懒加载技术,以便在用户滚动页面时动态加载内容。

8. 提供安全的网站

安全的网站是提高 CTR 和 CVR 的关键。以下是一些建议:

  • 使用 HTTPS 协议来加密网站的通信。
  • 使用安全的密码和身份验证工具,以便保护用户的隐私和数据。
  • 使用安全的软件和插件,以便保护网站免受攻击。
  • 使用安全的编码和开发实践,以便避免安全漏洞和攻击。

9. 提供多渠道访问

多��

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

AT4CTR: 对比学习构建辅助任务提升CTR预估性能

关注我们,一起学习 标题: AT4CTR: Auxiliary Match Tasks for Enhancing Click-Through Rate Prediction 地址:https://arxiv.org...导读 本文主要是针对CTR预估中数据稀疏性问题提出的相关方法,再原有的ctr预估模型中引入了一个辅助匹配任务,通过对比学习来提高点击率预测精度(AT4CTR)。...两个受协同过滤启发的匹配任务,以增强用户和item之间的相关性建模。 第一个匹配任务旨在拉近用户和item之间正样本的表征。...用户的表征包含用户画像和行为序列的emb。在用户画像 x^{UP} 中有多种类型的特征,将所有这些特征的emb拼接得到对应的表示 e^{UP} 。...并经过MLP对齐user和item的维度 r^U=MLP(e^U) r^I=MLP(e^I) 基于本节开头所述的方式构建正负样本对,然后通过infoNCE来训练模型,分别构建用户锚点和item为锚点的

71610

推荐系统遇上深度学习(十九)--探秘阿里之完整空间多任务模型ESSM

这一篇,我们将焦点转向CVR的预估,来看一下阿里提出的完整空间多任务模型ESSM是如何处理CVR预估中存在的样本选择偏差(sample selection bias)和数据稀疏(data sparsity...因此,我们将(x,y)输入到CTR任务中,得到CTR的预估值,将(x,z)输入到CVR任务中,得到CVR的预估值,CTR和CVR的预估值相乘,便得到了CTCVR的预估值。...其中,θctr和θcvr分别是CTR网络和CVR网络的参数,l(⋅)是交叉熵损失函数。...可以看到,相对于BASE模型,ESMM模型在CVR任务中AUC指标提升了 2.18%,在CTCVR任务中AUC指标提升了2.32%。...另一方面,ESMM模型的贡献在于其提出的利用学习CTR和CTCVR的辅助任务,迂回地学习CVR的思路。

3.2K40
  • 多任务学习模型ESMM原理与实现(附代码)

    这涉及到CTR与CVR两个任务,因此使用多任务学习(MTL)是一个自然的选择,论文的关键亮点正在于“如何搭建”这个MTL。 首先需要重点区分下,CVR预估任务与CTCVR预估任务。...CVR = 转化数/点击数。是预测“假设item被点击,那么它被转化”的概率。CVR预估任务,与CTR没有绝对的关系。一个item的ctr高,cvr不一定同样会高,如标题党文章的浏览时长往往较低。...CVR-task和CTR-task使用相同的特征和特征embedding,即两者从Concatenate之后才学习各自独享的参数; 隐式学习pCVR。..._loss_dict中的内容进行加和。 2. metric计算 注意:计算CVR的指标时需要mask掉曝光数据。...实验发现,ESMM的跷跷板现象较为明显,CTR与CVR任务的效果较难同时提升。 链接: https://tianchi.aliyun.com/dataset/dataDetail?

    1.4K20

    【CTR】ESMM:多任务联合学习

    看到这里,大家可能有很多疑问: CVR 预估任务中,样本选择偏差是什么问题? ESMM 是怎样多任务训练的,又是如何联合训练的? 带着问题,我们来阅读以下内容。...上述策略的一大关键在于没有考虑到 CTR 和 CVR 的顺序动作信息,而阿里妈妈的同学通过充分利用用户操作的顺序性提出了 ESMM 算法,该方法能够同时解决 SSB 和 DS 问题。...ESMM 并不是直接使用曝光样本来训练 CVR,而是利用 的关系,CTCVR 和 CTR 都可以通过曝光的样本进行训练,而 CVR 作为中间变量可以由 CTR 和 CTCVR 估算得到。...(可以这样理解,CVR 模型是没有监督信号的,而 CTR 和 CTCVR 都是有监督信号的,最后利用公式约束得到 CVR 模型。)...我们来看下 ESMM 的损失函数,由具有监督信息的 CVR 和 CTCVR 任务组成: 其中, 和 分别是 CTR 和 CVR 网络的参数; 为交叉熵损失函数。

    2.5K20

    【论文笔记】CVR预估之ESMM模型

    ESMM主要包括两个子网络:左半部分是CVR网络,右半部分为CTR网络。CVR和CTR网络采用相同的结构作为base模型。CTCVR将两个网络的输出值的乘积作为CTCVR。...loss函数中的 θctr\theta_{ctr}θctr​ 和 θcvr\theta_{cvr}θcvr​ 分别是CTR和CVR网络的参数,l()表示交叉熵函数。...在ESMM中,CVR网络的embedding和CTR网络的embedding相互共享,遵循特征表示的迁移学习模式。用于CTR训练的曝光样本数据量比CVR任务大很多。...,使用点击过的曝光数据来预测pCVR 在所有曝光数据上预测pCTCVR 任务二用于比较在整个空间上不同的CVR建模方法,能反映出是否解决SSB问题以及表现如何。...ESMM模型在CTR和CTCVR上表现比其他模型号很多,AUC上有很大的差距。 在整个数据集上训练后,ESMM模型相比于BASE模型CVR上能取得2.18%的提升,CTCVR上取得2.32%的提升。

    3.4K20

    搜推实战-有内味了!

    ,以及对应的处理策略; 1.CTR/CVR数据流浪费问题: 问题:在使用两套数据流的时候,我们一般需要对CTR和CVR数据流分别进行batch采样进行模型的训练,例如CTR网络的batch_size为4096...问题:CTR数据和CVR数据是分开采样训练的,每次都是分别随机采样的不同batch_size的数据,丢失了CTR数据和CVR数据之间的关联信息;经常出现同一个用户的连续行为被分割开,CTR数据是A用户点击了某个商品...实验小结:设计辅助Loss,在使用CTR数据流+CVR数据流建模的情况下,可以稳定提升曝光到转化的预估准确率; 3.CTR&CVR网络数据Cotrain的问题: 发现:在模型的过程中,我们发现先对CTR...网络先进行单独训练,固定住CTR网络再对CVR网络进行训练,相较于CTR网络和CVR网络共同训练带来的效果要好很多,但是训练的成本也会大一些,这个发现应该是通用的,也较容易理解,我们先对CTR网络进行训练完成之后...纯CTR数据流 基于对CTR数据流和CVR数据流Cotrain的讨论,我们发现既然CVR的数据是全部被包含在CTR数据中的,分开训练又浪费数据又没法直接关联关系,既然所有的CVR数据流都来源于CTR数据流

    2.1K21

    多目标建模总结

    概述 在推荐系统中,通常有多个业务目标需要同时优化,常见的指标包括点击率CTR、转化率CVR、 GMV、浏览深度和品类丰富度等。...以CTR和CVR为例,最终的目标通常是CTCVR,因此,可以分别训练一个CTR模型和CVR模型,如下图所示: 通常在实际的任务中会根据不同任务的重要性,对该任务赋予不同的权重。...没有考虑两个数据之间的关系,如上述的CTR与CVR之间存在顺序的关系; 2.2....在CTR,CVR这个多任务场景下,ESMM(Entire space multi-task model)[3]模型就是为解决上述两个问题而提出,在ESMM模型的建模过程中引入两个辅助任务,即:CTR建模和...align*} 其中, \theta _{cvr} 表示的是CVR塔中的参数, \theta _{ctr} 表示的是CTR塔中的参数, y_i 表示的是样本 \mathbf{x}_i 在CTR任务上的label

    1K20

    20分钟吃掉广告算法业务知识

    一,两种广告 广告按其投放目的可以分成两类:效果广告 和 品牌广告。 效果广告是为了直接提升某个产品的用户数量或者销售收入。...五, CTR和CVR预估 从eCPM的计算公式中可以看到,对于CPC广告,计算它的关键是准确地估计点击率CTR。...而对于CPA广告,要计算eCPM,不仅需要准确地估计点击率CTR,还需要准确地估计转化率CVR。 可以说,CTR和CVR估计得准不准,直接决定了广告流量分发的效率,从而决定了广告平台的最终收益。...从算法角度来看,CTR预估和CVR预估可以转换成一个二分类问题(点击还是没点击,转化还是没有转化)。...但广告的CTR/CVR预估和推荐系统的精排有一点细微的差别,推荐系统的精排业务上只关心这个排序的相对值,但是广告系统的CTR/CVR预估是关心这预估概率的绝对值的。

    1.8K20

    多目标建模总结

    概述在推荐系统中,通常有多个业务目标需要同时优化,常见的指标包括点击率CTR、转化率CVR、 GMV、浏览深度和品类丰富度等。...以CTR和CVR为例,最终的目标通常是CTCVR,因此,可以分别训练一个CTR模型和CVR模型,如下图所示:图片通常在实际的任务中会根据不同任务的重要性,对该任务赋予不同的权重。...,如上述的CTR与CVR之间存在顺序的关系;2.2....在CTR,CVR这个多任务场景下,ESMM(Entire space multi-task model)[3]模型就是为解决上述两个问题而提出,在ESMM模型的建模过程中引入两个辅助任务,即:CTR建模和...*}其中,\theta _{cvr} 表示的是CVR塔中的参数,\theta _{ctr} 表示的是CTR塔中的参数,y_i 表示的是样本\mathbf{x}_i 在CTR任务上的label,z_i 表示的是样本

    1.3K20

    CVR预估模型ESMM

    建模,不过在对CVR建模的过程中需要同时对CTR以及CTCVR建模。...,如上图所示,左侧是一个CVR任务的塔,右侧是一个CTR任务的塔,两个塔可以构建两个任务,分别为pCTR和pCTCVR,这样样本分别是从“曝光->点击”和“曝光->转化”,解决了样本空间的问题,通过模型中参数的学习...损失函数因为在ESMM中存在两个学习任务,分别为CTR和CTCVR,则最终的损失函数为:\begin{align*}L\left ( \theta _{cvr},\theta _{ctr} \right..._{cvr} \right ) \right )\end{align*}其中,\theta _{cvr} 表示的是CVR塔中的参数,\theta _{ctr} 表示的是CTR塔中的参数,y_i...总结在ESMM网络中,通过引入两个辅助任务CTR和CTCVR,由于这两个任务的输入空间都变成了“曝光”,从而解决了传统CVR建模中在training和inference两个过程中输入空间不一致的问题,另一个方面

    1.6K10

    CVR预估模型ESMM

    ESMM模型结构 基于以上的分析,在ESMM模型的建模过程中引入两个辅助任务,即:CTR建模和CTCVR建模,ESMM的网络结构如下图所示: 在ESMM模型结构中,有两个特点: 第一,在ESMM结构中包含了两个塔...,如上图所示,左侧是一个CVR任务的塔,右侧是一个CTR任务的塔,两个塔可以构建两个任务,分别为pCTR和pCTCVR,这样样本分别是从“曝光->点击”和“曝光->转化”,解决了样本空间的问题,通过模型中参数的学习...结果 ctr_pred = PredictionLayer('binary', name=task_names[0])(ctr_logit) cvr_pred = PredictionLayer('binary...CTR * CVR model = Model(inputs=inputs_list, outputs=[ctr_pred, ctcvr_pred]) 3....总结 在ESMM网络中,通过引入两个辅助任务CTR和CTCVR,由于这两个任务的输入空间都变成了“曝光”,从而解决了传统CVR建模中在training和inference两个过程中输入空间不一致的问题,

    75820

    推荐论文阅读之多任务建模ESM2

    使用post-click数据建模,这部分数据量相较于用于CTR训练的数据少1-3个数量级。...ESMM模型使用多任务学习,分别学习post-view点击率CTR和post-view 点击转化率CTCVR,目标CVR通过两者计算得到CVR=CTCVR/CTR;点击率CTR是在整个样本空间上,即所有的曝光样本进行训练...同时两个任务CTR、CVR底层的embedding权重是共享的,可以缓解数据稀疏问题。...根据在序列图上定义的条件概率,使用多任务学习分别预测各自的小目标,然后将它们合并构成最终的CVR预测结果。 ? 模型分为3个模块:SEM、DPM和SCM。...同时根据条件概率可以知道,我们最终的目标PCVR也适用于整个曝光样本,pCVR=pCTCVR/pCTR,这样就可以解决样本选择偏差问题,同时由于D/O Action行为样本相比于转化样本数据量会提升,对于数据稀疏问题也可以得到进一步缓解

    1.1K10

    王喆:工作近十年的方向思考

    ② 广告系统中的模型相比推荐模型的要求更高,推荐模型一般只要求把推荐物品的序排正确,广告模型则要求预估的CTR,CVR要非常准确,具备物理意义,因为这些都影响到出价和扣费这些直接和公司收入相关的模块。...② 过于复杂的深度学习模型已经被不少公司证明对业务指标的提升效果是微乎其微的。复杂结构对于稳定性的影响,模型体积过大对于资源的过度浪费,已经很难和模型带来的效果提升持平。...很多同行可能会说,上面主要说的是CTR,CVR这类比较重的精排模型吧,召回和粗排的迭代难道也遇到同样的问题吗?...其实广告系统的业界和学术界的同行们大多数的关注点都在CTR,CVR预估这类“大模型”上,Pacing这种非常偏实践,偏工程模块的曝光度就比较低。...CTR,CVR估的更准。

    2.1K41

    王喆:深度学习计算广告

    ② 广告系统中的模型相比推荐模型的要求更高,推荐模型一般只要求把推荐物品的序排正确,广告模型则要求预估的CTR,CVR要非常准确,具备物理意义,因为这些都影响到出价和扣费这些直接和公司收入相关的模块。...② 过于复杂的深度学习模型已经被不少公司证明对业务指标的提升效果是微乎其微的。复杂结构对于稳定性的影响,模型体积过大对于资源的过度浪费,已经很难和模型带来的效果提升持平。...很多同行可能会说,上面主要说的是CTR,CVR这类比较重的精排模型吧,召回和粗排的迭代难道也遇到同样的问题吗?...其实广告系统的业界和学术界的同行们大多数的关注点都在CTR,CVR预估这类“大模型”上,Pacing这种非常偏实践,偏工程模块的曝光度就比较低。...CTR,CVR估的更准。

    1.4K20

    推荐广告算法模型之多目标模型

    2.3.3 ESMM模型 由于解决任务序列有依赖关系的多任务建模,文章指出CVR预估模型,预估的正是这个转化概率,它与CTR没有绝对的关系,很多人有一个先入为主的认知,即若user对某item的点击概率很低...认识到点击(CTR)、转化(CVR)、点击然后转化(CTCVR)是三个不同的任务后,我们再来看三者的关联: 再思考下,ESMM的结构是基于“乘”的关系设计——pCTCVR=pCVR*pCTR,是不是也可以通过...例如分别训练一个CTCVR和CTR模型,然后相除得到pCVR,其实也是可以的,但这有个明显的缺点:真实场景预测出来的pCTR、pCTCVR值都比较小,“除”的方式容易造成数值上的不稳定。...损失函数设计为: 特点:解决了样本选择的问题,CVR是在点击的基础上进行训练,训练集只有点击的,实际数据可能有曝光点击和曝光未点击的数据,我们往往把曝光未点击的数据给忽略了,这样就造成了样本选择偏差,训练集和实际数据分布不一致的情况...特点:多任务学习中往往存在跷跷板现象,也就是说,多任务学习相对于多个单任务学习的模型,往往能够提升一部分任务的效果,同时牺牲另外部分任务的效果。

    1.3K42

    腾讯全民K歌直播推荐算法实践总结

    所以我们唯一的变化就是把交叉的粒度变成了Bit级别,这样的AutoInt也给我们的AUC带来7个千分点的提升。 4. CVR预估--ESMM,GradNorm ?...直播推荐的本质不是CTR而是CVR。即我们需要让用户get到直播间的内容,而不是仅仅让他点进去。CTR和CVR是有一定的用户路径的,也就是说我们要先去点然后才能成为CVR。...第一,就是选择的偏差,从CTR到CVR是一个选择的偏差。第二个问题就是CVR这样的问题在我们的场景里也是比较稀疏的。 ?...在学习的过程中,如果我们手动调节CVR、CTR的权重也是可以的。但是这样的调节不能做到端到端的动态调节。...我们在上了CGC以后,在点击率和有效点击,以及时长方面都有很大提升。 ?

    1.7K10

    推荐系统多目标建模技巧

    作者:DOTA 在做推荐系统时,在系统刚刚搭建时,针对业务目标我们可能只需要去优化CTR或者CVR即可,但是不同的推荐场景下的优化目标不同。...通过线上AB-Test和Sample Weight调整的联动,可以保证A目标损失较小的前提下,带来目标B的提升,实现初级的多目标优化。...MMoE 背景 推荐系统在给用户推荐一些热门内容的同时,也需要对这些内容的质量有一定的把控,比如用户的停留时长、点赞、转发、评论等,所以成熟的推荐系统的推荐模型会同时对多个目标进行优化,而如何对这多个目标进行并行优化...CVR预估和CTR任务相比,有两个不同: (1)Sample Selection Bias转化是在点击之后才“有可能”发生的动作,传统CVR模型通常以点击数据为训练集,其中点击未转化为负例,点击并转化为正例...(2)Data Sparsity作为CVR训练数据的点击样本远小于CTR预估训练使用的曝光样本。 一些策略可以缓解这两个问题,但都没有从实质上解决上面任一个问题。

    1.6K10

    RS Meet DL(62)-电商推荐中的特殊特征蒸馏

    最后讲一下精排阶段,这一阶段我们不仅要预估CTR、还要预估CVR,因为电商领域的推荐的目标一般是提高GMV(CTR * CVR * Price,商品的Price是确定的,无需预估)。...但是,这些特征在线上预估阶段是无法获取的,我们需要在给用户展示物品的时候就来预估CVR,所以对于CVR预估来说,用户在点击后进入到商品详情页的一些特征同样是Privileged Features。...使用这些Privileged Features,是可以提升模型的预测精度的。...因此本文借鉴模型蒸馏的思想,让粗排阶段的CTR模型或者是精排阶段的CVR模型,都能够学习到一些Privileged Features的信息。下一节,咱们来具体学习一下。...因此,一种做法是同时训练Teacher网络和Student网络,二者的损失函数变为: 这么做虽然能够带来训练速度的提升,但有时候的效果是比较差的。

    1.9K10

    【论文笔记】Optimized Cost per Click in Taobao Display Advertising

    系统架构 描述淘宝展示广告系统中数据信息流,有利于理解出价优化如何生效。从PV请求开始到最终的展示曝光。 ?...(pcvr/pctr和实际cvr/ctr存在偏差,预估不准确)。这部分是在预测之后OCPC Layer之前进行的。...模型评估 CTR模型中,正样本指那些曝光后发生点击的数据;负样本指曝光但用户没有点击的数据;CVR模型中,正样本指曝光后发生点击,之后又发生转化的数据;负样本指曝光后只发生点击,没有转化的数据。...线下模拟 通过历史的log数据,将pCTR和pCVR当作真实的CTR和CVR,比如某次展示的广告计算出pCTR为4%,则认为贡献了0.04的点击。然后设计4种策略,统计指标。...实验效果如下表,相对策略0,策略1和3的千次展示GMV和ROI都提高了;但RPM降了,只有策略2(OCPC)在3个指标上都获得了提升。 ? 线上效果 ?

    2.1K11

    多任务学习——【SIGIR 2018】ESMM

    CVR预估面临两个关键问题: Sample Selection Bias (SSB) 转化是在点击之后才“有可能”发生的动作,传统CVR模型通常以点击数据为训练集,其中点击未转化为负例,点击并转化为正例...Data Sparsity (DS) 作为CVR训练数据的点击样本远小于CTR预估训练使用的曝光样本。...这涉及到CTR与CVR两个任务: 可以看到左侧就是我们要求解的目标pCVR,通过引入右侧的两个辅助任务pCTCVR和pCTR: 将乘法转化为除法,我们可以得到pCVR的计算: 在整个样本空间建模...由于CTR任务的训练样本量要大大超过CVR任务的训练样本量,ESMM模型中特征表示共享的机制能够使得CVR子任务也能够从只有展现没有点击的样本中学习,从而能够极大地有利于缓解训练数据稀疏性问题 损失函数由两部分组成...,即pCTCVR和pCTR输出的交叉熵:

    31110
    领券