首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在Pandas中更改列的数据类型【方法总结】

例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?...在这种情况下,设置参数: df.apply(pd.to_numeric, errors='ignore') 然后该函数将被应用于整个DataFrame,可以转换为数字类型的列将被转换,而不能(例如,它们包含非数字字符串或日期...另外pd.to_datetime和pd.to_timedelta可将数据转换为日期和时间戳。...软转换——类型自动推断 版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型的DataFrame的列转换为更具体的类型。...例如,用两列对象类型创建一个DataFrame,其中一个保存整数,另一个保存整数的字符串: >>> df = pd.DataFrame({'a': [7, 1, 5], 'b': ['3','2','1

20.3K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Spark Extracting,transforming,selecting features

    ,会被强转为字符串再处理; 假设我们有下面这个包含id和category的DataFrame: id category 0 a 1 b 2 c 3 a 4 a 5 c category是字符串列,包含...18.0 1 19.0 2 8.0 3 5.0 4 2.2 hour是一个双精度类型的数值列,我们想要将其转换为类别型,设置numBuckets为3,也就是放入3个桶中,得到下列DataFrame:...最少一个特征必须被选中,不允许指定重复列,因此不会出现重复列,注意,如果指定了一个不存在的字符串列会抛出异常; 输出向量会把特征按照整数指定的顺序排列,然后才是按照字符串指定的顺序; 假设我们有包含userFeatures...列的DataFrame: userFeatures [0.0, 10.0, 0.5] userFeatures是一个包含3个用户特征的向量列,假设userFeatures的第一列都是0,因此我们希望可以移除它...,类似R中的公式用于线性回归一样,字符串输入列会被one-hot编码,数值型列会被强转为双精度浮点,如果标签列是字符串,那么会首先被StringIndexer转为double,如果DataFrame中不存在标签列

    21.9K41

    【精心解读】用pandas处理大数据——节省90%内存消耗的小贴士

    当然,像Spark这类的工具能够胜任处理100G至几个T的大数据集,但要想充分发挥这些工具的优势,通常需要比较贵的硬件设备。...每种数据类型在pandas.core.internals模块中都有一个特定的类。pandas使用ObjectBlock类来表示包含字符串列的数据块,用FloatBlock类来表示包含浮点型列的数据块。...这对我们原始dataframe的影响有限,这是由于它只包含很少的整型列。 同理,我们再对浮点型列进行相应处理: 我们可以看到所有的浮点型列都从float64转换为float32,内存用量减少50%。...因此,将其转换成datetime会占用原来两倍的内存,因为datetime类型是64位比特的。将其转换为datetime的意义在于它可以便于我们进行时间序列分析。...总结 我们学习了pandas如何存储不同的数据类型,并利用学到的知识将我们的pandas dataframe的内存用量降低了近90%,仅仅只用了一点简单的技巧: 将数值型列降级到更高效的类型 将字符串列转换为类别类型

    8.7K50

    代码工具 | 数据清洗,试试这 8套Python代码

    涵盖8大场景的数据清洗代码 这些数据清洗代码,一共涵盖8个场景,分别是: 删除多列、更改数据类型、将分类变量转换为数字变量、检查缺失数据、删除列中的字符串、删除列中的空格、用字符串连接两列(带条件)、转换时间戳...(从字符串到日期时间格式) 删除多列 在进行数据分析时,并非所有的列都有用,用df.drop可以方便地删除你指定的列。...有时候,会有新的字符或者其他奇怪的符号出现在字符串列中,这可以使用df[‘col_1’].replace很简单地把它们处理掉。...转换时间戳(从字符串到日期时间格式) 在处理时间序列数据时,我们很可能会遇到字符串格式的时间戳列。...这意味着要将字符串格式转换为日期时间格式(或者其他根据我们的需求指定的格式) ,以便对数据进行有意义的分析。

    1.2K20

    时间序列数据处理,不再使用pandas

    而对于多变量时间序列,则可以使用带有多列的二维 Pandas DataFrame。然而,对于带有概率预测的时间序列,在每个周期都有多个值的情况下,情况又如何呢?...['Date'], format='%d-%m-%Y') data.index = data['ds'] data = data.drop('Date', axis=1) data.head() 将字符串列...数据框转换 继续学习如何将宽表格式数据框转换为darts数据结构。...将图(3)中的宽格式商店销售额转换一下。数据帧中的每一列都是带有时间索引的 Pandas 序列,并且每个 Pandas 序列将被转换为 Pandas 字典格式。...在沃尔玛商店的销售数据中,包含了时间戳、每周销售额和商店 ID 这三个关键信息。因此,我们需要在输出数据表中创建三列:时间戳、目标值和索引。

    21810

    8个用于数据清洗的Python代码

    涵盖8大场景的数据清洗代码 这些数据清洗代码,一共涵盖8个场景,分别是: 删除多列、更改数据类型、将分类变量转换为数字变量、检查缺失数据、删除列中的字符串、删除列中的空格、用字符串连接两列(带条件)、转换时间戳...(从字符串到日期时间格式) 删除多列 在进行数据分析时,并非所有的列都有用,用df.drop可以方便地删除你指定的列。...有时候,会有新的字符或者其他奇怪的符号出现在字符串列中,这可以使用df[‘col_1’].replace很简单地把它们处理掉。...(从字符串到日期时间格式) 在处理时间序列数据时,我们很可能会遇到字符串格式的时间戳列。...这意味着要将字符串格式转换为日期时间格式(或者其他根据我们的需求指定的格式) ,以便对数据进行有意义的分析。

    88460

    8个数据清洗Python代码,复制可用,最长11行 | 资源

    涵盖8大场景的数据清洗代码 这些数据清洗代码,一共涵盖8个场景,分别是: 删除多列、更改数据类型、将分类变量转换为数字变量、检查缺失数据、删除列中的字符串、删除列中的空格、用字符串连接两列(带条件)、转换时间戳...(从字符串到日期时间格式) 删除多列 在进行数据分析时,并非所有的列都有用,用df.drop可以方便地删除你指定的列。...有时候,会有新的字符或者其他奇怪的符号出现在字符串列中,这可以使用df[‘col_1’].replace很简单地把它们处理掉。...转换时间戳(从字符串到日期时间格式) 在处理时间序列数据时,我们很可能会遇到字符串格式的时间戳列。...这意味着要将字符串格式转换为日期时间格式(或者其他根据我们的需求指定的格式) ,以便对数据进行有意义的分析。

    57420

    8个数据清洗Python代码,复制可用,最长11行

    涵盖8大场景的数据清洗代码 这些数据清洗代码,一共涵盖8个场景,分别是: 删除多列、更改数据类型、将分类变量转换为数字变量、检查缺失数据、删除列中的字符串、删除列中的空格、用字符串连接两列(带条件)、转换时间戳...(从字符串到日期时间格式) 删除多列 在进行数据分析时,并非所有的列都有用,用df.drop可以方便地删除你指定的列。...有时候,会有新的字符或者其他奇怪的符号出现在字符串列中,这可以使用df[‘col_1’].replace很简单地把它们处理掉。...转换时间戳(从字符串到日期时间格式) 在处理时间序列数据时,我们很可能会遇到字符串格式的时间戳列。...这意味着要将字符串格式转换为日期时间格式(或者其他根据我们的需求指定的格式) ,以便对数据进行有意义的分析。

    78121

    8个数据清洗Python代码,复制可用,最长11行 | 资源

    涵盖8大场景的数据清洗代码 这些数据清洗代码,一共涵盖8个场景,分别是: 删除多列、更改数据类型、将分类变量转换为数字变量、检查缺失数据、删除列中的字符串、删除列中的空格、用字符串连接两列(带条件)、转换时间戳...(从字符串到日期时间格式) 删除多列 在进行数据分析时,并非所有的列都有用,用df.drop可以方便地删除你指定的列。...有时候,会有新的字符或者其他奇怪的符号出现在字符串列中,这可以使用df[‘col_1’].replace很简单地把它们处理掉。...转换时间戳(从字符串到日期时间格式) 在处理时间序列数据时,我们很可能会遇到字符串格式的时间戳列。...这意味着要将字符串格式转换为日期时间格式(或者其他根据我们的需求指定的格式) ,以便对数据进行有意义的分析。

    41220

    实操 | 内存占用减少高达90%,还不用升级硬件?没错,这篇文章教你妙用Pandas轻松处理大规模数据

    在处理大型数据集时(100Gb到几TB),我们通常会使用像 Spark 这样的工具,但是想要充分发挥 Spark 的功能,通常需要很高的硬件配置,导致成本过高。...对象列(object columns)主要用于存储字符串,包含混合数据类型。为了更好地了解怎样减少内存的使用量,让我们看看 Pandas 是如何将数据存储在内存中的。...每当我们选择、编辑、或删除某个值时,dataframe class 会和 BlockManager class 进行交互,将我们的请求转换为函数和方法调用。...每个类型在 pandas.core.internals 模块中都有一个专门的类, Pandas 使用 ObjectBlock class 来代表包含字符串列的块,FloatBlock class 表示包含浮点型数据...到更节省空间的类型; 将字符串转换为分类类型(categorical type)。

    3.7K40

    Dive into Delta Lake | Delta Lake 尝鲜

    表中存在但 DataFrame 中不存在的列会被设置为 null 如果 DataFrame 中有额外的列在表中不存在,那么该操作将抛出异常 Delta Lake 具有可以显式添加新列的 DDL 和自动更新...当用户想要读取旧版本的表或目录时,他们可以在 Apache Spark 的读取 API 中提供时间戳或版本号,Delta Lake 根据事务日志中的信息构建该时间戳或版本的完整快照。...events") 对于timestamp_string,仅接受日期或时间戳字符串。...附加新列时将保留大小写。 NullType 列 写入 Delta 时,会从 DataFrame 中删除 NullType 列(因为 Parquet 不支持 NullType)。...这个快照包括的内容不仅仅只有一个版本号,还会包括当前快照下的数据文件,上一个 Snapshot 的操作,以及时间戳和 DeltaLog 的记录。

    1.1K10

    PySpark SQL——SQL和pd.DataFrame的结合体

    :这是PySpark SQL之所以能够实现SQL中的大部分功能的重要原因之一,functions子类提供了几乎SQL中所有的函数,包括数值计算、聚合统计、字符串以及时间函数等4大类,后续将专门予以介绍...DataFrame既然可以通过其他类型数据结构创建,那么自然也可转换为相应类型,常用的转换其实主要还是DataFrame=>rdd和DataFrame=>pd.DataFrame,前者通过属性可直接访问...rank、dense_rank、ntile,以及前文提到的可用于时间重采样的窗口函数window等 数值处理类,主要是一些数学函数,包括sqrt、abs、ceil、floor、sin、log等 字符串类...,包括子字符串提取substring、字符串拼接concat、concat_ws、split、strim、lpad等 时间处理类,主要是对timestamp类型数据进行处理,包括year、month、hour...提取相应数值,timestamp转换为时间戳、date_format格式化日期、datediff求日期差等 这些函数数量较多,且与SQL中相应函数用法和语法几乎一致,无需全部记忆,仅在需要时查找使用即可

    10K20

    Spark Structured Streaming 使用总结

    具体而言需要可以执行以下操作: 过滤,转换和清理数据 转化为更高效的存储格式,如JSON(易于阅读)转换为Parquet(查询高效) 数据按重要列来分区(更高效查询) 传统上,ETL定期执行批处理任务...例如实时转储原始数据,然后每隔几小时将其转换为结构化表格,以实现高效查询,但高延迟非常高。在许多情况下这种延迟是不可接受的。...cloudtrail.checkpoint/") .start() StreamingQuery将会连续运行,当新数据到达时并会对其进行转换 这里我们为StreamingQuery指定以下配置: 从时间戳列中导出日期...每10秒检查一次新文件(即触发间隔) 将解析后的DataFrame中的转换数据写为/cloudtrail上的Parquet格式表 按日期对Parquet表进行分区,以便我们以后可以有效地查询数据的时间片...我们在这里做的是将流式DataFrame目标加入静态DataFrame位置: locationDF = spark.table("device_locations").select("device_id

    9.1K61

    使用 Spark | 手把手带你十步轻松拿下 Spark SQL 使用操作

    DataFrame/DataSet 转 RDD 这个转换比较简单,直接调用 rdd 即可将 DataFrame/DataSet 转换为 RDD: val rdd1 = testDF.rdd val rdd2...DataSet 转 DataFrame 直接调用 toDF,即可将 DataSet 转换为 DataFrame: val peopleDF4 = peopleDS.toDF peopleDF4.show...DataFrame 转 DataSet DataFrame 与 DataSet 均支持 Spark SQL 的算子操作,同时也能进行 SQL 语句操作,下面的实战中会进行演示。...4.4 读取数据源,加载数据(RDD 转 DataFrame) 读取上传到 HDFS 中的广州二手房信息数据文件,分隔符为逗号,将数据加载到上面定义的 Schema 中,并转换为 DataFrame 数据集...Array 类型结构数据 可见,DataFrame 转换为 DataSet 后,同样支持 Spark SQL 的算子操作。

    8.8K51

    肝了3天,整理了90个Pandas案例,强烈建议收藏!

    中获取列标题列表 如何随机生成 DataFrame 如何选择 DataFrame 的多个列 如何将字典转换为 DataFrame 使用 ioc 进行切片 检查 DataFrame 中是否是空的 在创建...列的数据类型 更改 DataFrame 指定列的数据类型 如何将列的数据类型转换为 DateTime 类型 将 DataFrame 列从 floats 转为 ints 如何把 dates 列转换为 DateTime...在任意位置插入行 使用时间戳索引向 DataFrame 中添加行 为不同的行填充缺失值 append, concat 和 combine_first 示例 获取行和列的平均值 计算行和列的总和 连接两列...过滤包含某字符串的行 过滤索引中包含某字符串的行 使用 AND 运算符过滤包含特定字符串值的行 查找包含某字符串的所有行 如果行中的值包含字符串,则创建与字符串相等的另一列 计算 pandas group...中每组的行数 检查字符串是否在 DataFrme 中 从 DataFrame 列中获取唯一行值 计算 DataFrame 列的不同值 删除具有重复索引的行 删除某些列具有重复值的行 从 DataFrame

    4.6K50
    领券