文章目录 1.修改单列的数据类型 2.修改指定多列的数据类型 3.创建dataframe时,修改数据类型 4.读取时,修改数据类型 5.自动 1.修改单列的数据类型 import pandas as...pd.read_csv('test.csv') df['column_name'] = df['column_name'].astype(np.str) print(df.dtypes) 2.修改指定多列的数据类型...import pandas as pd df[['c3','c5']] = df[['c3','c5']].apply(pd.to_numeric) print(df.dtypes) 3.创建dataframe...时,修改数据类型 import pandas as pd # method1 df = pd.DataFrame(data, dtype='float') print(df.dtypes) # method2...df = pd.DataFrame(data, dtype=np.float64) print(df.dtypes) 4.读取时,修改数据类型 import pandas as pd df = pd.read_csv
我们在工作中,经常用到 Excel,有时候,我们会使用 Pandas 生成 Excel。但生成的 Excel 列的顺序可能跟我们想要的不一样。...例如: import pandas as pd datas = [ {'id': 1, 'name': '王大', 'salary': 9999, 'work_time': 19}, {...这个时候,有两种方案: 方法1,把包含正确列表顺序的列表,传给 DataFrame 对象。...df = df[['id', 'name', 'work_time', 'salary']] 运行效果如下图所示: 方法2,使用.reindex()方法: df = df.reindex(columns
一、前言 前几天在Python最强王者交流群【群除我佬】问了一个Pandas处理的问题,提问截图如下: 原始的数据如下: df = pd.DataFrame({"a":[1,1,2,2],"b":[[20,40...代码如下: import pandas as pd df = pd.DataFrame({"a":[1,1,2,2],"b":[[20,40],[30,20,90],[40],[50,70]]}) new_df
本文处理的场景如下,hive表中的数据,对其中的多列进行判重deduplicate。
关于XLMMacroDeobfuscator XLMMacroDeobfuscator一款针对XLM宏的安全工具,该工具可以帮助广大研究人员提取并解码经过混淆处理的XLM宏(Excel 4.0宏)。...该工具使用了xlrd2、pyxlsb2和其自带的解析器来相应地从xls、xlsb和xlsm文件中提取单元数据以及其他信息。 你可以在xlm-macro-lark.template查看XLM语法。...XLMMacroDeobfuscator可以在任意操作系统上运行,并正常来相应地从xls、xlsb和xlsm文件中提取和解析XLM宏文件,而无需安装Microsoft Excel。...模拟器安装 首先,我们需要使用pip下载和安装XLMMacroDeobfuscator: pip install XLMMacroDeobfuscator 接下来,我们可以使用下列命令安装最新的开发版本...下面的样例中,我们能够以Python库的形式使用XLMMacroDeobfuscator并对XLM宏进行反混淆处理: from XLMMacroDeobfuscator.deobfuscator import
问题如下所示:大佬们好,如何使用正则表达式提取这个列中括号内的目标内容,比方说我要得到:安徽芜湖第十三批、安徽芜湖第十二批等等。...二、实现过程 这里【瑜亮老师】给了一个指导,如下所示:如果是Python的话,可以使用下面的代码,如下所示:不用加\,原数据中是中文括号。...经过指导,这个方法顺利地解决了粉丝的问题。 如果你也有类似这种数据分析的小问题,欢迎随时来交流群学习交流哦,有问必答! 三、总结 大家好,我是皮皮。
使用PowerMockito如何对私有方法进行mock一、介绍最近,正在进行单元测试的补充,然后就遇到了一个令人头疼的问题;我有一个publicMethod方法,在当中调用了privateMethod方法...我需要对publicMethod方法进行测试,但我不想测试privateMethod方法。这单测该怎么写???...:{}", name); }}可以看到publicMethod方法调用了privateMethod,也就是公共方法调用了私有方法。...PowerMockito.verifyPrivate(powerMockitoServiceImplUnderTest).invoke("privateMethod", anyString()); }}三、最后注意一下,断言的位置是使用了...PowerMockito.verifyPrivate(),可以对私有方法进行次数的断言
一、前言 前几天在Python星耀交流群有个叫【iLost】的粉丝问了一个关于使用pandas解决两列数据对比的问题,这里拿出来给大家分享下,一起学习。...大概意思是说在DF中有2列数据,想每行取两列数据中的最大值,形成一个新列,该怎么写?最开始【iLost】自己使用了循环的方法写出了代码,当然是可行的,但是写的就比较难受了。...二、解决过程 这里给出5个方法,感谢大佬们的解答,一起来看看吧! 方法一:【月神】解答 其实这个题目的逻辑和思路也相对简单,但是对于Pandas不熟悉的小伙伴,接受起来就有点难了。...使用numpy结合pandas,代码如下: df['max4'] = np.where(df['cell1'] > df['cell2'],df['cell1'], df['cell2']) df...这篇文章基于粉丝提问,针对df中,想在每行取两列数据中的最大值,作为新的一列问题,给出了具体说明和演示,一共5个方法,顺利地帮助粉丝解决了问题,也帮助大家玩转Pandas,学习Python相关知识。
使用PowerMockito如何对私有方法进行单元测试一、介绍在上一篇文章中,讲解了公共方法调用私有方法的测试,我们只想对公共方法进行验证测试,私有方法进行mock即可那么在本篇中,如何对私有方法进行单元测试呢...二、代码需要测试的类与私有方法,仅贴出关键代码,实体类什么的就没必要贴了package com.banmoon.service.impl;import com.banmoon.mapper.PowerMockitoMapper...powerMockitoServiceImplUnderTest); // 验证结果 verify(powerMockitoMapper).updateById(any()); }}可以看到,在运行测试那个地方,使用了反射来执行了私有方法
如何在Pandas中实现高效的数据清洗和预处理? 在Pandas中实现高效的数据清洗和预处理,可以通过以下步骤和方法来完成: 处理空值: 使用dropna()函数删除含有缺失值的行或列。...数据转换: 使用 melt()函数将宽表转换为长表。 使用 pivot_table()函数创建交叉表格。 使用apply()函数对每一行或每一列应用自定义函数。...Pandas提供了强大的日期时间处理功能,可以方便地从日期列中提取这些特征。...Pandas的groupby方法可以高效地完成这一任务。 在Pandas中,如何使用聚合函数进行复杂数据分析? 在Pandas中,使用聚合函数进行复杂数据分析是一种常见且有效的方法。...例如,对整个DataFrame进行多列的汇总: agg_result = df.agg (['mean', 'sum']) print(agg_result) 这种方式非常适合需要同时对多个列进行多种聚合操作的场景
对于数据库设计来说,多对多(或者一对多)是一种常见的数据关系,比如联系人和地址之间的关系。...我们可以看到,虽然我们选择了三张表,EF能够解析出Contact_Address为关系表,所以最终生成出来的就是我们希望的具有多对多(如果一个联系人只有一个地址,你可以将关系更新成一对多)。...在Entity Framework中使用存储过程(一):实现存储过程的自动映射 在Entity Framework中使用存储过程(二):具有继承关系实体的存储过程如何定义?...在Entity Framework中使用存储过程(三):逻辑删除的实现与自增长列值返回 在Entity Framework中使用存储过程(四):如何为Delete存储过程参数赋上Current值?...在Entity Framework中使用存储过程(五):如何通过存储过程维护多对多关系?
提供了很多方便简洁的方法,用于对单列、多列数据进行批量运算或分组聚合运算,熟悉这些方法后可极大地提升数据分析的效率,也会使得你的代码更加地优雅简洁。...2.2 apply() apply()堪称pandas中最好用的方法,其使用方式跟map()很像,主要传入的主要参数都是接受输入返回输出。...但相较于map()针对单列Series进行处理,一条apply()语句可以对单列或多列进行运算,覆盖非常多的使用场景。...输入多列数据 apply()最特别的地方在于其可以同时处理多列数据,我们先来了解一下如何处理多列数据输入单列数据输出的情况。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。
文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes 一、简介 pandas提供了很多方便简洁的方法,用于对单列...、多列数据进行批量运算或分组聚合运算,熟悉这些方法后可极大地提升数据分析的效率,也会使得你的代码更加地优雅简洁。...2.2 apply() apply()堪称pandas中最好用的方法,其使用方式跟map()很像,主要传入的主要参数都是接受输入返回输出。...但相较于map()针对单列Series进行处理,一条apply()语句可以对单列或多列进行运算,覆盖非常多的使用场景。...输入多列数据 apply()最特别的地方在于其可以同时处理多列数据,我们先来了解一下如何处理多列数据输入单列数据输出的情况。
文档编写目的 在前面的文章中介绍了用Ranger对Hive中的行进行过滤以及针对列进行脱敏,在生产环境中有时候会有脱敏条件无法满足的时候,那么就需要使用自定义的UDF来进行脱敏,本文档介绍如何在Ranger...中配置使用自定义的UDF进行Hive的列脱敏。...目前用户ranger_user1拥有对t1表的select权限 2.2 授予使用UDF的权限给用户 1.将自定义UDF的jar包上传到服务器,并上传到HDFS,该自定义UDF函数的作用是将数字1-9按照...2.使用hive用户创建UDF函数 ? 3.测试UDF函数的使用 ? 4.使用测试用户登录Hive并使用UDF函数,提示没有权限 ? 5.创建策略,授予测试用户使用该UDF函数的权限 ? ?...6.再次使用测试用户进行验证,使用UDF函数成功 ? 2.3 配置使用自定义的UDF进行列脱敏 1.配置脱敏策略,使用自定义UDF的方式对phone列进行脱敏 ? ?
分享筛选功能之前,我们先分享如何提取某一列,某一行 一、提取DataFrame数据的某一行 1、显示前N行 使用head函数 ? 2、显示后N行 ? 3、显示任意某一行 ?...这里两个数字都是闭合的,案例中[7:11]则选取的是第8行至第12行(pandas从0开始编号) 二、提取任意列 1、按照列名提取单列 ? 2、按照列名提取多列 ?...三、提取任意行列数据 1、提取5至9行、列名字为名称的数据 ? 2、提取5至9行、列名字为名称的数据(方法二) ? 3、提取5至9行、列名字为名称、最高的数据 ?...常见错误:原始数字使用文本形式存储 所以在这里和大家介绍一下如何强制文本转数字 ? 上述两种方法均可! 细心的朋友肯定会说:“你框我!不是转化涨跌幅咩!怎么搞成涨跌额了!” ?...七、模糊筛选 模糊筛选想当年也浪费了我不少时间,我以为pandas会自带一个函数来的,结果是使用字符串的形式来实现的~ 提问:我们将名称那一列含有“金”字的行提取出来~ Excel实现这个功能很简单
Pandas的query函数为我们提供了一种编写查询过滤条件更简单的方法,特别是在的查询条件很多的时候,在本文中整理了10个示例,掌握着10个实例你就可以轻松的使用query函数来解决任何查询的问题。...在后端Pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE的数据子集或记录。所以要过滤Pandas中的DataFrame,需要做的就是在查询函数中指定条件即可。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas中的query()方法还可以在查询表达式中使用数学计算。...,但是使用query()函数则变为简单的多。...OrderDate.dt.month显示了如何使用dt访问者仅提取整个日期值的月份值。
大家好,我是俊欣 Pandas的query函数为我们提供了一种编写查询过滤条件更简单的方法,特别是在的查询条件很多的时候,在本文中整理了10个示例,掌握着10个实例你就可以轻松的使用query函数来解决任何查询的问题...在后端Pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE的数据子集或记录。所以要过滤Pandas中的DataFrame,需要做的就是在查询函数中指定条件即可。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas中的query()方法还可以在查询表达式中使用数学计算。...,但是使用query()函数则变为简单的多。...OrderDate.dt.month显示了如何使用dt访问者仅提取整个日期值的月份值。
第01章 Pandas基础 第02章 DataFrame基础运算 ---- 2.1 从DataFrame中选择多列 使用列名列表提取DataFrame的多列: >>> import pandas as...["director_name"]) pandas.core.series.Series'> # Series类型 也可以使用loc提取多列。...KeyError: ('actor_1_name', 'actor_2_name', 'actor_3_name', 'director_name') ---- 2.2 使用方法提取多列 缩短列名之后查看每种数据类型的个数...NaN 0 使用.filter方法筛选所有列名中包含fb的列: >>> movies.filter(like="fb").head() director_fb actor_3_...NaN 12.0 ---- 2.3 按列名进行排列 对列进行排序的原则: 将列分为分类型和连续型; 按照分类型和连续型对列分组; 分类型排在连续型的前面; 下面是个例子。
pandas.的query函数为我们提供了一种编写查询过滤条件更简单的方法,特别是在的查询条件很多的时候,在本文中整理了10个示例,掌握着10个实例你就可以轻松的使用query函数来解决任何查询的问题。...PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...在后端pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE的数据子集或记录。所以要过滤pandas DataFrame,需要做的就是在查询函数中指定条件即可。...query()函数则变为简单的多。...OrderDate.dt.month显示了如何使用DT访问者仅提取整个日期值的月份值。
pandas.的query函数为我们提供了一种编写查询过滤条件更简单的方法,特别是在的查询条件很多的时候,在本文中整理了10个示例,掌握着10个实例你就可以轻松的使用query函数来解决任何查询的问题。...PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...pandas query()函数可以灵活地根据一个或多个条件提取子集,这些条件被写成表达式并且不需要考虑括号的嵌套 在后端pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE...query()函数则变为简单的多 除了数学操作,还可以在查询表达式中使用内置函数。...OrderDate.dt.month显示了如何使用DT访问者仅提取整个日期值的月份值。
领取专属 10元无门槛券
手把手带您无忧上云