首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Scikit-learn

    而在这些分支版本中,最有名,也是专门面向机器学习的一个就是Scikit-learn。...和其他众多的开源项目一样,Scikit-learn目前主要由社区成员自发进行维护。可能是由于维护成本的限制,Scikit-learn相比其他项目要显得更为保守。...这主要体现在两个方面:一是Scikit-learn从来不做除机器学习领域之外的其他扩展,二是Scikit-learn从来不采用未经广泛验证的算法。...本文将简单介绍Scikit-learn框架的六大功能,安装和运行Scikit-learn的大概步骤,同时为后续各更深入地学习Scikit-learn提供参考。...Scikit-learn的六大功能 Scikit-learn的基本功能主要被分为六大部分:分类,回归,聚类,数据降维,模型选择和数据预处理。

    77830

    如何使用scikit-learn机器学习库做预测

    scikit-learn是基于Python的一个机器学习库,你可以在scikit-learn库中选择合适的模型,使用它训练数据集并对新数据集作出预测。...本文分以下三点内容: 针对特定的预测如何选择合适的模型 什么是分类预测 什么是回归预测 废话少说,让我们开始吧! 一、选择模型 模型选择是机器学习的第一步。...二、如何使用分类模型 分类问题是指模型学习输入特征和输出标签之间的映射关系,然后对新的输入预测标签。...1、类别预测 类别预测:给定模型并训练数据实例后,通过scikit-learn的predict()函数预测新数据实例的类别。...scikit-learn提供LabelEncoder函数,用以将字符串转换为整数。

    1.2K20

    Scikit-Learn简介

    而在这些分支版本中,最有名,也是专门面向机器学习的一个就是Scikit-learn。...2 特点 作为专门面向机器学习的Python开源框架,Scikit-learn可以在一定范围内为开发者提供非常好的帮助。...它内部实现了各种各样成熟的算法,容易安装和使用,样例丰富,而且教程和文档也非常详细。 另一方面,Scikit-learn也有缺点。例如它不支持深度学习和强化学习,这在今天已经是应用非常广泛的技术。...看到这里可能会有人担心Scikit-learn的性能表现,这里需要指出的是:如果不考虑多层神经网络的相关应用,Scikit-learn的性能表现是非常不错的。...究其原因,一方面是因为其内部算法的实现十分高效,另一方面或许可以归功于Cython编译器;通过Cython在Scikit-learn框架内部生成C语言代码的运行方式,Scikit-learn消除了大部分的性能瓶颈

    70910

    如何使用Scikit-learn在Python中构建机器学习分类器

    在本教程结束时,您将了解如何使用Python构建自己的机器学习模型。关于Python的语法详见腾讯云开发者手册Python中文开发文档。...第一步 - 导入Scikit-learn 让我们首先安装Python模块Scikit-learn,这是Python 最好、文档记录最多的机器学习库之一。...: No module named 'sklearn' 错误消息表明sklearn未安装,因此请使用pip下载库: (my_env) $ pip install scikit-learn[alldeps...Scikit-learn安装了各种数据集,我们可以将其加载到Python中,并包含我们想要的数据集。导入并加载数据集: ML Tutorial ......结论 在本教程中,您学习了如何在Python中构建机器学习分类器。现在,您可以使用Scikit-learn在Python中加载数据、组织数据、训练、预测和评估机器学习分类器。

    2.6K50

    【Scikit-Learn 中文文档】使用 scikit-learn 介绍机器学习 | ApacheCN

    使用 scikit-learn 介绍机器学习 | ApacheCN 内容提要 在本节中,我们介绍一些在使用 scikit-learn 过程中用到的 机器学习 词汇,并且给出一些例子阐释它们。...这个问题可以是: 分类 : 样本属于两个或更多个类,我们想从已经标记的数据中学习如何预测未标记数据的类别。...该 数据集上的简单示例 说明了如何从原始数据开始调整,形成可以在 scikit-learn 中使用的数据。 从外部数据集加载 要从外部数据集加载,请参阅 加载外部数据集....在 scikit-learn 中,分类的估计器是一个 Python 对象,它实现了 fit(X, y) 和 predict(T) 等方法。...有关使用 scikit-learn 的模型持久化的更多详细信息,请参阅 模型持久化 部分。 规定 scikit-learn 估计器遵循某些规则,使其行为更可预测。

    1.3K90

    Scikit-learn使用总结

    在机器学习和数据挖掘的应用中,scikit-learn是一个功能强大的python包。在数据量不是过大的情况下,可以解决大部分问题。...学习使用scikit-learn的过程中,我自己也在补充着机器学习和数据挖掘的知识。这里根据自己学习sklearn的经验,我做一个总结的笔记。另外,我也想把这篇笔记一直更新下去。...大多数scikit-learn估计器接收和输出的数据格式均为numpy数组或类似格式。 1.2 转化器 转换器用于数据预处理和数据转换,主要是三个方法: 1、fit():训练算法,设置内部参数。...不同的提升算法之间的差别,一般是(1)如何更新样本的权值,(2)如何组合每个分类器的预测。其中Adaboost中,样本权值是增加那些被错误分类的样本的权值,分类器C_i的重要性依赖于它的错误率。...伯努利分布.png 03 scikit-learn扩展 3.0 概述 具体的扩展,通常要继承sklearn.base包下的类。

    1.4K71
    领券