Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...例 1 在此示例中,我们创建了一个空数据帧。然后,通过将列名 ['Name', 'Age'] 传递给 DataFrame 构造函数的 columns 参数,我们在数据帧中创建 2 列。...Python 中的 Pandas 库创建一个空数据帧以及如何向其追加行和列。
在可变形的卷积中,深像素的接收场集中到相应的物体。如上所示,在中,深蓝色像素(上方)属于大绵羊。但是,其矩形接受区域(底部)在左底部包含小绵羊,这可能会给诸如实例分割之类的任务带来歧义。...在b中,感受野变形并集中在大羊身上,避免了歧义。 了解可变形卷积中的偏移 如上所述,偏移量有利于局部特征的核适应和接受场的集中。顾名思义,偏移量用于使内核足迹局部变形,从而最终使接收场整体变形。...学习稀疏标记视频的时间姿态估计 这项研究是对上面讨论的一个很好的解决方案。由于标注成本很昂贵,因此视频中仅标记了少量帧。然而,标记帧图像中的固有问题(如遮挡,模糊等)阻碍了模型训练的准确性和效率。...利用多分辨率特征金字塔构造可变形部分,并采用不同的扩张方法。该方法的优点在于,我们可以利用相邻的未标记帧来增强已标记帧的特征学习,因为相邻帧相似,我们无需对视频的每一帧进行标记。...具有遮罩传播的视频实例分割 作者还通过在现有的Mask-RCNN模型中附加一个掩码传播头来提出用于实例分割的掩码传播,其中可以将时间t的预测实例分割传播到其相邻帧t +δ。
标签:Power Query,Filter函数 问题:需要整理一个有数千条数据的列表,Excel可以很方便地搜索并显示需要的条目,然而,想把经过提炼的结果列表移到一个新的电子表格中,不知道有什么好方法?...为简化起见,我们使用少量的数据来进行演示,示例数据如下图1所示。 图1 示例数据位于名为“表1”的表中,我们想获取“产地”列为“宜昌”的数据。...方法1:使用Power Query 在新工作簿中,单击功能区“数据”选项卡中的“获取数据——来自文件——从工作簿”命令,找到“表1”所在的工作簿,单击“导入”,在弹出的导航器中选择工作簿文件中的“表1”...图3 方法2:使用FILTER函数 新建一个工作表,在合适的位置输入公式: =FILTER(表1,表1[产地]="宜昌") 结果如下图4所示。...图5 FILTER函数简介 FILTER函数是一个动态数组函数,其语法为: =FILTER(array, include, [if_empty]) 其中,参数array,想要筛选的数据,单元格区域或数组
要解决的问题是一个不成对的问题,其中HR目标没有相应的LR对,但网络必须学习整个LR子集的特征分布,同时保持原始HR目标的相似视觉外观。...生成器网络(G)将与噪声向量(z)连接的HR图像作为输入,并生成比输入小4×的单反图像(r=4)。例如,一个128×128的对象将导致一个32×32的目标。...LR目标在当前帧中的所有位置都是有效的候选位置。此外,只要与当前帧中的目标不重叠,前一帧和后一帧中的LR目标位置就可以放置SLR目标——这不适用于图像数据集。...3.2.3、插入和混合 作为最后阶段,流水线将通过等式(6)获得的相应SLR目标 混合在前一步骤中获得的每个 点中的一个 修复图像上,以生成 。...合成物体的数量等于LR物体的数量。
如何在不同的时间尺度上对未来作出合理的预测也是这些机器模型的重要的能力之一,这种能力可以让模型预测出周围世界的变化,包括其他模型的行为,并计划下一步如何行动与决策。...研究人员在文中还展示了如何在不进行微调的情况下,将MMCC应用于各种具有挑战性的任务,并对其预测进行了量化测试实验。...模型从叙事视频中的一个样本帧开始,学习如何在所有叙事文本中找到相关的语言表述。...结合视觉和文本这两种模式,该模型能够用到整个视频来学习到如何预测潜在未来的事件,并估计该帧的相应语言描述,并以类似的方式学习预测过去帧的函数。...首先是数据,研究人员在无约束的真实世界视频数据上训练模型。使用HowTo100M数据集的子集,其中包含大约123万个视频及其自动提取的音频脚本。
例如,对于个人类别的视频(例如,运动员),它通常在开始时包含每个运动员的一些介绍内容,这不适合跟踪。因此,研究人员仔细过滤掉每个视频中不相关的内容,并保留一个可用于跟踪的剪辑。...对于具有特定跟踪目标的视频,对于每个帧,如果目标对象出现在帧中,则标注者会手动绘制/编辑其边界框,使其成为最紧的右边界框,以适合目标的任何可见部分;否则,标注者会向帧提供一个「目标不存在」的标签,无论是不可见还是完全遮挡...35 个代表性跟踪器的评估 没有对如何使用 LaSOT 进行限制,提出了两种协议来评估跟踪算法,并进行相应的评估。 方案一:使用 1400 个序列来评估跟踪性能。...具体来说,训练子集包含 1120 个视频,2.83m 帧,测试子集包含 280 个序列,690k 帧。跟踪程序的评估在测试子集上执行。方案二的目标是同时提供一大套视频用于训练和评估跟踪器。...一个潜在的原因是重新培训可能和原作者使用配置不同。 文中又对 SiamFC 的 LaSOT 训练集进行了再培训,以证明使用更多的数据如何改进基于深度学习的跟踪器。
例如,对于个人类别的视频(例如,运动员),它通常在开始时包含每个运动员的一些介绍内容,这不适合跟踪。因此,他们仔细过滤掉每个视频中不相关的内容,并保留一个可用于跟踪的剪辑。...对于具有特定跟踪目标的视频,对于每个帧,如果目标对象出现在帧中,则标注者会手动绘制/编辑其边界框,使其成为最紧的右边界框,以适合目标的任何可见部分;否则,标注者会向帧提供一个“目标不存在”的标签,无论是不可见还是完全遮挡...35个代表性跟踪器的评估 他们没有对如何使用LaSOT进行限制,但提出了两种协议来评估跟踪算法,并进行相应的评估。 方案一:他们使用1400个序列来评估跟踪性能。...根据80/20原则(即帕累托原则),他们从每类20个视频中选出16个进行培训,其余的进行测试。具体来说,训练子集包含1120个视频,2.83m帧,测试子集包含280个序列,690k帧。...一个潜在的原因是他们的重新培训可能和原作者使用配置不同。 他们对SiamFC的LaSOT训练集进行了再培训,以证明使用更多的数据如何改进基于深度学习的跟踪器。
p=9766 在某些情况下,你可能希望通过在每帧中添加数据并保留先前添加的数据来进行动画处理。 现在,我们将通过制作点线图的动画来探索。...id通过使其等于所讨论的类别变量,可用于为多个类别创建单独的行;否则使用id = 1。...transition_reveal其默认是显示线条,仅绘制当前帧的点: 要创建点的累积动画,使用如下代码: shadow_mark 保留先前帧中的数据。...使用for循环绘制并保存每年的图表 要制作点和线的累积动画,我们需要编写一个循环为每帧创建一个单独的图像。...这部分代码将遍历列表中的每个条目:for (y in years)。 该代码使用相同的原理来绘制并保存每年的图表: 该代码如何工作 对于每一年,y该代码首先都会使一个称为R的R对象。
在每个关键帧,滑动图被记录为局部地图。从局部地图中分割地平面,并使用加权最小二乘法估计 CP 参数。之后,关联在不同关键帧观察到的地平面,并且构建一个位姿图并联合优化残差。...平面度低的地面不会被建模为平面地标,相应的观测约束也不会被融合。第三,当地面匹配不明确时,在某些指标(平面度、点数)下只选择一个地平面。...这样,无论关键帧在停车场的哪个位置,每个关键帧都只拥有一个具有精确估计CP参数的地平面。 4.实验 本文采用的数据集是HIK和KITTI。...最终的实验数据记录如下: 注意,上表中的A/B,A指的是GCLO*, B指的是GCLO,GCLO*代表不加入地面约束。...注意,上图中,kitti分成了两个子集,子集1旨在说明自己算法有优势的场景,子集2旨在分析为什么算法在这些场景不行,作者以Seq.09举例分析, 如下图所示,虽然每个关键帧的地面是局部平坦的,但地面的坡度是逐渐变化的
https://www.arxiv-vanity.com/papers/1812.10157/ 抽象 现有的条件视频预测方法从大型数据库训练网络并概括为先前未见过的数据。...我们采取相反的立场,并引入一个模型,该模型从给定视频的第一帧中学习并扩展其内容和动作,例如,使其长度加倍。为此,我们提出了一种双网络,可以灵活地使用动态和静态卷积运动内核来预测未来的帧。...结论 我们已经从单个视频剪辑中引入了用于未来帧合成的模型。...最初由视网膜中的Direction Selective细胞机制启发,我们的运动表示基于双网络:一个学习内核,另一个动态选择最佳子集用于下一帧预测。我们的帧生成与挑战视频的基线方法相比毫不逊色。...作为未来的工作,我们计划调查这种双网构造对其他任务的潜力,例如运动构成或运动传递。另一个方向是提取更丰富的潜在运动表示。 ? ? ? ? ?
;平方根采样是实例平衡采样的一种变体,其中每个类别的采样概率与相应类别中样本大小的平方根有关;渐进平衡采样在实例平衡采样和类别平衡采样之间进行渐进插值。...然后,作者将学习过程解耦为表示学习和分类两阶段,并系统地探索在不平衡问题中,不同的平衡策略如何影响这两个阶段。...2.2 SimCal 论文[3]系统地研究了最先进的两阶段实例分割模型 Mask R-CNN 在最近的长尾 LVIS 数据集上的性能下降,并揭示了一个主要原因是没有将对象提议 (object proposals...具体来说,FrameStack 在训练时会根据运行模型的性能动态调整不同类的采样率,使其可以从尾部类(通常运行性能较低)中采样更多的视频帧,从头类中采样更少的帧。...3.5 LST learning to segment the tail (LST) [15]还将训练样本分成几个平衡的子集,并基于类增量学习处理每个子集。
今天将分享用于手术腹腔镜视频数据解剖和工具分割、检测和 CVS评估完整实现版本,为了方便大家学习理解整个流程,将整个流程步骤进行了整理,并给出详细的步骤结果。感兴趣的朋友赶紧动手试一试吧。...一、Endoscapes2024介绍 自动评估关键安全视图 (CVS) 是外科数据科学中的一个重要问题,近年来引起了人们的关注。...在这 58813 帧中,11090 帧(每 5 秒 1 帧)由三位专家使用 CVS 注释,其中 CVS 标签是三个二进制图像级注释的集合,表示已达到三个 CVS 标准中的每一个:即 C1 - 两个结构、...请注意,Endoscapes-BBox201 的每个折叠(训练、验证、测试)都是 Endoscapes-CVS201 中相应折叠的严格子集。 Endoscapes-Seg201。...Endoscapes-Seg201 的一个子集,包含来自 50 个视频(201 个视频的子集)的 14940 帧,其中 493 帧(每 30 秒 1 帧)带有分割掩码注释。
这是通过一个新的关键帧系统实现的,该系统有效地管理历史地图信息,此外,还提供了一个自定义的迭代最近点解算器,用于点云快速配准和数据管理。...B.基于关键帧的子地图 这项工作的一个关键创新在于我们的系统如何管理地图信息,并在扫描到子地图匹配中导出局部子地图,以进行全局运动优化,我们没有直接使用点云并将点云存储到典型的八叉树数据结构中,而是保留要搜索的关键帧的历史记录...,然后,通过从关键帧子集连接相应的点云,而不是直接检索机器人当前位置某个半径内的局部点,来创建用于点云到子地图匹配的结果。...图4.关键帧选择和自适应阈值,(A)该方法的子地图(红色)是通过连接关键帧子集(绿色球体)的扫描点云生成的,该子集由K个最近邻关键帧和构成关键帧集凸包的关键帧组成。...与其他工作不同的一个关键创新是,如何使用关键帧点云对数据库高效地导出局部子地图,以进行全局姿势优化。
为了解决这个问题,本文提出了一个简单且高效的方法,该方法使用了目前姿态估计中state-of-the-art的方法并使用一个新颖的3D CNN结构将视频相邻帧中的时序信息融合到其中。...本文在极具挑战性的PoseTrack dataset上训练并评估了提出的方法,这个数据集包含了人们在不同的日常场景中的视频,并且在所有帧上标注了人体关节的位置和对应的人体索引。...并且,作者将最佳的模型在一个100帧的视频上运行了2分钟,使其能够随着时间顺序跟踪自身的运动,最终表现出了良好的实用潜力。...图3 训练和测试数据中轨迹的数量和长度归一化后的直方图,注意由于训练数据的只有中间的30帧才有标签,训练数据中标注过的轨迹长度的最大值为30。...表4,在测试集上的最终表现。本文将提出的方法和现存的方法在这个数据集上的一个子集上进行比较。注意[22]给出了在PCKh0.34的结果;一个可比较的结果PCKh0.5结果通过私人方式得到。
作为计算机视觉研究人员,我们有兴趣探索自我驾驶的感知算法的前沿,使其更安全。为了设计和测试潜在的算法,研究者希望利用来自真实驾驶平台收集的数据中的所有信息。...这些数据具有四个主要特征:大规模,多样化,在街道上捕捉,并具有时间信息。数据多样性对于测试感知算法的鲁棒性特别重要。但是,当前的开放数据集只能覆盖上述属性的一个子集。...一个随机视频子集的位置信息 正如名称所示,数据集包含100,000个视频。每个视频长约40秒,720p和30 fps。视频还附带手机记录的GPS / IMU信息,以显示粗糙的驾驶轨迹。...注释 研究者在每个视频的第10秒采样一个关键帧,并为这些关键帧提供注释。它们被标记在几个层次上:图像标记,道路对象边界框,可驱动区域,车道标记和全帧实例分段。...最后,我们用全帧实例分割标记10K图像的一个子集。我们的标记集合与Cityscapes中的训练注释兼容,以便于研究数据集之间的域转换。 ?
使用在循环中融入人类反馈和高效模型的可扩展数据引擎,我们创建了一个新数据集 (AS-1B),其中包含超过 10 亿个区域,并用语义标签、问答对和详细标题进行注释。...它广泛涵盖了现实世界中 350 万个常见和罕见的概念,并拥有 1322 亿个描述概念及其属性的代币。利用这个新的数据集,我们开发了全视模型(ASM),这是一个用于全景视觉识别和理解的统一框架。...我们跟踪多个帧上的场景运动并对齐图像,以保持所需的清晰度并产生美观的运动条纹。我们捕获曝光不足的突发并选择输入帧的子集,该子集将产生受控长度的模糊轨迹,而不管场景或相机运动速度如何。...我们预测帧间运动并合成运动模糊以填充输入帧之间的时间间隙。最后,我们将模糊图像与清晰的常规曝光进行合成,以保护几乎没有移动的场景中的面部或区域的清晰度,并生成最终的高分辨率和高动态范围(HDR)照片。...我们的关键想法是,语言可以帮助智能体预测未来:将观察到什么,世界将如何表现,以及哪些情况将得到奖励。这种观点将语言理解与未来预测结合起来,作为一个强大的自我监督学习目标。
在FOM中,作者随机选择并打乱视频帧的一个子集,并训练模型恢复它们的原始顺序。大量的消融研究表明,VSM和FOM在视频+语言预训练中都起着关键作用。...与HowTo100M中的描述相比,电视数据集包含了更复杂的情节,需要全面解释人类情感、社会动态和事件的因果关系,使其成为对HowTo100M的有价值的补充,并更接近现实生活场景。...为了在更具挑战性的基准测试上评估本文的模型,作者收集了两个关于视频时刻检索和问答的新数据集——How2R和How2QA。...然后将整个视频片段的编码帧嵌入输入到时间Transformer 中,学习全局视频上下文,并获得最终的上下文化视频嵌入。...这些视觉特征concat起来,并通过一个全连接(FC)层投影到与token嵌入投影到相同的低维空间中。 由于视频帧是顺序的,因此它们的位置嵌入可以与文本嵌入器中相同的方式进行计算。
该方法使用基于排序的损失进行监督,并使用计算得到的压缩表示来调制基本 VSR 模型。 在时空信息融合过程中充分挖掘压缩视频自带的元数据,增强基于 RNN 的双向 VSR 模型的功能。...具体来说,视频帧对在压缩方面有两种准备方式。一个子集由具有相同 CRF 但帧类型不同的帧对组成,另一个子集由具有相同帧类型但 CRF 不同的帧对组成。...压缩编码器从前一个子集中学习不同帧类型的压缩水平,从后一个子集中学习区分不同 CRF 的压缩级别。 图2 压缩编码器模块 网络包括两个输入支路,即帧类型支路和帧内容支路。...对于帧类型分支,为每个帧类型分配一个向量,并使用令牌嵌入来表示该信息。对于帧内容分支,从视频编解码器解码的帧被馈送到几个卷积层。...因此,本文在对齐过程中充分利用了压缩视频自然产生的两种额外元数据,即运动向量和残差映射。 将 MV 作为初始偏移量,并借助输入帧和残差映射对其进行进一步细化。
领取专属 10元无门槛券
手把手带您无忧上云