首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在matplotlib中显示正态分布图中的标准差和值?

在matplotlib中显示正态分布图中的标准差和值,可以通过以下步骤实现:

  1. 导入所需的库和模块:
代码语言:txt
复制
import numpy as np
import matplotlib.pyplot as plt
  1. 生成正态分布的数据:
代码语言:txt
复制
mu = 0  # 均值
sigma = 1  # 标准差
data = np.random.normal(mu, sigma, 1000)  # 生成1000个符合正态分布的随机数
  1. 绘制直方图:
代码语言:txt
复制
plt.hist(data, bins=30, density=True, alpha=0.7)  # 绘制直方图,设置bins数量、密度和透明度
  1. 绘制标准差和值的线:
代码语言:txt
复制
plt.axvline(np.mean(data), color='r', linestyle='dashed', linewidth=1)  # 绘制均值线,红色虚线
plt.axvline(np.mean(data) + np.std(data), color='g', linestyle='dashed', linewidth=1)  # 绘制均值+标准差线,绿色虚线
plt.axvline(np.mean(data) - np.std(data), color='g', linestyle='dashed', linewidth=1)  # 绘制均值-标准差线,绿色虚线
  1. 添加图例和标签:
代码语言:txt
复制
plt.legend(['Mean', 'Mean + Std', 'Mean - Std'])  # 添加图例
plt.xlabel('Value')  # 设置x轴标签
plt.ylabel('Frequency')  # 设置y轴标签
  1. 显示图形:
代码语言:txt
复制
plt.show()  # 显示图形

这样就可以在matplotlib中显示正态分布图中的标准差和值。对于标准差和值的线,均值用红色虚线表示,均值加上一个标准差用绿色虚线表示,均值减去一个标准差用绿色虚线表示。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python数据清洗--异常值识别与处理01

前言 在《Python数据清洗--类型转换和冗余数据删除》和《Python数据清洗--缺失值识别与处理》文中已经讲解了有关数据中重复观测和缺失值的识别与处理,在本节中将分享异常值的判断和处理方法。...异常值的识别 通常,异常值的识别可以借助于图形法(如箱线图、正态分布图)和建模法(如线性回归、聚类算法、K近邻算法),在本期内容中,将分享两种图形法,在下一期将分享基于模型识别异常值的方法。...正态分布图法 根据正态分布的定义可知,数据点落在偏离均值正负1倍标准差(即sigma值)内的概率为68.2%;数据点落在偏离均值正负2倍标准差内的概率为95.4%;数据点落在偏离均值正负3倍标准差内的概率为...如上图所示,左图中的两条水平线是偏离均值正负2倍标准差的参考线,目测有6个样本点落在参考线之外,可以判定它们属于异常点;而对于右图中偏离均值正负3倍标准差的参考线来说,仅有1个样本点落在参考线之外,即说明该样本点就是...尽管基于箱线图的分位数法和基于正态分布的参考线法都可以实现异常值和极端异常值的识别,但是在实际应用中,需要有针对性的选择。

10.4K32

Python 绘图,我只用 Matplotlib

01 散点图 散点图显示两组数据的值,如图1-1所示。每个点的坐标位置由变量的值决定,并由一组不连接的点完成,用于观察两种变量的相关性。例如,身高—体重、温度—维度。 ?...正态分布也称常态分布,是连续随机变量概率分布的一种,自然界、人类社会、心理和教育中的大量现象均按正态形式分布。例如,能力的高低、学生成绩的好坏等都属于正态分布。...正态分布曲线呈钟形,两头低,中间高,左右对称。因其曲线呈钟形,所以人们又经常称之为钟形曲线,如图4-2所示。 ? 图4-2 正态分布的钟形曲线 正态分布有两个参数,即均值和标准差。...均值是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为:取与均值越近的值的概率越大,而取离均值越远的值的概率越小。...绘制直方图,需要使用NumPy的np.random.randn(N)函数,这个函数的作用就是从标准正态分布中返回N个样本值。

1.2K20
  • 文末送书 | Python绘图,我只用Matplotlib

    散点图 散点图显示两组数据的值,如图1-1所示。每个点的坐标位置由变量的值决定,并由一组不连接的点完成,用于观察两种变量的相关性。例如,身高—体重、温度—维度。 ?...正态分布也称常态分布,是连续随机变量概率分布的一种,自然界、人类社会、心理和教育中的大量现象均按正态形式分布。例如,能力的高低、学生成绩的好坏等都属于正态分布。...正态分布曲线呈钟形,两头低,中间高,左右对称。因其曲线呈钟形,所以人们又经常称之为钟形曲线,如图4-2所示。 ? 图4-2 正态分布的钟形曲线 正态分布有两个参数,即均值和标准差。...均值是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为:取与均值越近的值的概率越大,而取离均值越远的值的概率越小。...绘制直方图,需要使用NumPy的np.random.randn(N)函数,这个函数的作用就是从标准正态分布中返回N个样本值。

    1.5K50

    使用Python进行描述性统计

    数值分析的过程中,我们往往要计算出数据的统计特征,用来做科学计算的NumPy和SciPy工具可以满足我们的需求。Matpotlob工具可用来绘制图,满足图分析的需求。...数据的发散程度可用极差(PTP)、方差(Variance)、标准差(STD)、变异系数(CV)来衡量,它们的计算方法如下:   极差是只考虑了最大值和最小值的发散程度指标,相对来说,方差包含了更多的信息...用协方差(COV)和相关系数(CORRCOEF)来衡量相关程度:   协方差的绝对值越大表示相关程度越大,协方差为正值表示正相关,负值为负相关,0为不相关。相关系数是基于协方差但进行了无量纲处理。...,由于身高变量是属于服从正态分布的,从绘制出来的直方图上也可以直观地看出来:   使用Matplotlib对身高这一定量变量绘制累积曲线的代码如下: 1 from matplotlib import...,由于身高变量是属于服从正态分布的,从绘制出来的累积曲线图上也可以直观地看出来: 3.3 关系分析(散点图)   在散点图中,分别以自变量和因变量作为横纵坐标。

    2.6K70

    使用Python进行描述性统计

    数值分析的过程中,我们往往要计算出数据的统计特征,用来做科学计算的NumPy和SciPy工具可以满足我们的需求。Matpotlob工具可用来绘制图,满足图分析的需求。...其中均值和中位数用于定量的数据,众数用于定性的数据。   对于定量数据(Data)来说,均值是总和除以总量(N),中位数是数值大小位于中间(奇偶总量处理不同)的值: ?   ...极差是只考虑了最大值和最小值的发散程度指标,相对来说,方差包含了更多的信息,标准差基于方差但是与原始数据同量级,变异系数基于标准差但是进行了无量纲处理。...使用NumPy计算极差、方差、标准差和变异系数: ?...3.3 关系分析(散点图)   在散点图中,分别以自变量和因变量作为横纵坐标。当自变量与因变量线性相关时,在散点图中,点近似分布在一条直线上。

    3.1K52

    在毕设中学习01——python、正态和标准正态分布、matlab数据文件导出

    正态分布 期望值(均值)μ,标准差σ(方差开根号) 补充一下标准差: 标准差是一组数据平均值分散程度的一种度量。一个较小的标准差,代表这些数值较接近平均值。...两组数的集合{0,5,9,14}和{5,6,8,9}其平均值都是7,但第二个集合具有较小的标准差 对称性质(那个小尾巴叫sigma) 最大值 参数变化性质 sigma原则...正态分布图像 标准正态分布 期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。...,参数2表示要划分区间数量 # 3)显示图像 plt.show() 关于matplotlib.pyplot 等待补充 Python中读取.mat文件 (针对的是BCI大赛第二届第三组数据-左右手运动想象...#如果想要查看这个'x_test'对应的value的所有值 #print(EEG_labels) #此处和上方输出值的时候由于数据量到达48万并且每个数据的小数位数都超过10位了,所以python

    60020

    开发 | 随机机器学习算法需要试验多少次,才足以客观有效的反映模型性能?

    和Matplotlib库。...最后生成的是数据的直方图,图中显示出了正态分布的贝尔曲线(钟形曲线),这意味着我们在进行数据分析工作时,可以使用标准的统计分析工具。 由图可知,数据以60为对称轴,左右几乎没有偏斜。...不过会不会还有更好的办法呢? 4.计算标准误差 标准误差用来计算样本均值偏离总体均值的多少。它和标准差不同,标准差描述了样本观察值的平均变化量。...在上图中添加纵坐标为0.5和1的辅助线,帮助我们找到可接受的标准误差值。代码如下: 雷锋网友情提醒,图中出现的两条红色辅助线,分别代表标准误差等于0.5和1。...其中红色直线表示总体的均值(在教程开始根据给定的均值和标准差生成了总体,所以总体的均值已知),重复1000次或更多后,可以用样本均值代替总体均值。 图中误差线包裹着均值线。

    1.2K90

    机器学习算法究竟需要试验多少次,才能有效反映模型性能?

    和Matplotlib库。...最后生成的是数据的直方图,图中显示出了正态分布的贝尔曲线(钟形曲线),这意味着我们在进行数据分析工作时,可以使用标准的统计分析工具。 由图可知,数据以60为对称轴,左右几乎没有偏斜。 3....不过会不会还有更好的办法呢? 4. 计算标准误差 标准误差用来计算样本均值偏离总体均值的多少。它和标准差不同,标准差描述了样本观察值的平均变化量。...在上图中添加纵坐标为0.5和1的辅助线,帮助我们找到可接受的标准误差值。代码如下: 友情提醒,图中出现的两条红色辅助线,分别代表标准误差等于0.5和1。...其中红色直线表示总体的均值(在教程开始根据给定的均值和标准差生成了总体,所以总体的均值已知),重复1000次或更多后,可以用样本均值代替总体均值。 图中误差线包裹着均值线。

    1.7K60

    机器学习统计概率分布全面总结(Python)

    如果事件遵循泊松分布,则: 在泊松分布中,事件彼此独立。事件可以发生任意次数。两个事件不能同时发生。 如每 60 分钟接到 4 个电话。这意味着 60 分钟内通话的平均次数为 4。...连续分布 正态分布 最著名和最常见的分布(也称为高斯分布),是一种钟形曲线。它可以通过均值和标准差定义。正态分布的期望值是均值。 曲线对称。均值、中位数和众数相等。曲线下总面积为 1。...大约 68%的值落在一个标准差范围内。~95% 落在两个标准差范围内,~98.7% 落在三个标准差范围内。...如果可用数据较少(约 30 个),则使用 t 分布代替正态分布。 在 t 分布中,自由度变量也被考虑在内。根据自由度和置信水平在 t 分布表中找到关键的 t 值。这些值用于假设检验。...X 轴表示随机变量 X 可能取到的潜在值,Y 轴表示分布的概率密度函数(PDF)值。 Gamma 分布 它用于统计检验。这通常在实际分布中不会出现。

    55610

    讲讲切比雪夫定理

    对于m=2,m=3和m=5有如下结果: 所有数据中,至少有3/4(或75%)的数据位于均值±2个标准差范围内。 所有数据中,至少有8/9(或88.9%)的数据位于均值±3个标准差范围内。...所有数据中,至少有24/25(或96%)的数据位于均值±5个标准差范围内。 拿前面的正态分布为例,在均值±2个标准差范围内的数据约占到全部的95%。...第二行是正态&非正态数据中均值±m个标准差范围内的数据占比,可以看到第一张图中的数据占比与我们前面的正态分布示意图中是一致的,第二张图因为是长尾分布,所以大部分数据都集中在了均值均值±1个标准差范围内。...切比雪夫定理的一个应用场景就是用来对数据进行预估,比如你现在知道一个群体收入的均值和标准差,然后想要根据均值和标准差得出这个群体的整体收入情况,比如90%的人的收入是多少、80%的人的收入是多少?...如果你已经确切的知道了这个群体的收入是符合正态分布的,那就简单了,我们知道正态分布中的数据是平均的分布在均值两侧的,90%的人会有45%的人小于均值,另外45%的人大于均值。

    1.5K30

    使用Pandas进行数据分析

    print(data.describe()) 这将显示我们data frame中各个属性的详细信息表,具体来说包含:数量,平均数,标准差,最小值,最大值,排序后位于25%的值、位于50%的值(中位数)以及位于...通过查看这些统计数据,我们可以注意到一些有趣的信息:如平均怀孕次数为3.8次、最小年龄为21岁、有些人的体重指数为0,但这是显然是不可能的,因此某些属性值应标记为缺失。...' data.boxplot() 上面这段代码将绘制图形的样式(通过matplotlib)更改为默认样式,这样图像显示效果更好: p1.png 我们可以看到,在上图中test属性有很多异常值。...我们还可以通过将各值进行离散化处理,处理后可以将各“容器(bucket)”中属性的频率作为直方图(hist)来查看: data.hist() 这可以让您注意各属性有趣的分布特征,例如pres和skin等属性近似于正态分布...接下来,我们研究使用了各种不同的方法来进行数据可视化,通过可视化图标我们发掘了数据中的更多有趣的信息,并且研究了数据在箱线图和直方图中的分布。

    3.4K50

    数据导入与预处理-第5章-数据清理

    缺失值的常见处理方式有三种:删除缺失值、填充缺失值和插补缺失值,pandas中为每种处理方式均提供了相应的方法。...正态分布也称高斯分布,是统计学中十分重要的概率分布,它有两个比较重要的参数:μ和σ,其中μ是遵从正态分布的随机变量(值无法预先确定仅以一定的概率取值的变量)的均值,σ是此随机变量的标准差。...箱形图是一种用于显示一组数据分散情况的统计图,它通常由上边缘、上四分位数、中位数、下四分位数、下边缘和异常值组成。...()函数用于根据Series和DataFrame类对象绘制箱形图,该箱形图中默认不会显示网格线; boxplot()函数用于根据DataFrame类对象绘制箱形图,该箱形图中默认会显示网格线。...如果需要从箱形图中获取异常值及其对应的索引,那么可以根据箱形图中异常值的范围计算,具体计算方式为:首先对数据集进行排序,然后根据排序后的数据分别计算Q1、Q3和IQR的值,最后根据异常值的范围(Q1 –

    4.5K20

    Excel实战技巧:从Excel预测的正态分布中返回随机数

    因此,如果我们能弄清楚如何计算均值和标准差,就可以使用这个公式从正态分布中返回一个随机数: =NORM.INV(RAND(), Mean, standard_dev) 再看看图3所示的图表,浅蓝色区域在均值的每一侧显示一个标准偏差...正如图表下方的第一个标签所示,浅蓝色区域约占总面积的68%。 浅蓝色和中蓝色区域一起显示均值的两个标准偏差内的值。图表下方的第二个标签显示,这代表了总面积的95%左右。 所以想想这意味着什么。...标准差是120和70之间的差值除以4个标准差,在本例中为12.5。...图4 在单元格中输入公式: A1:=NORM.INV(RAND(),95,12.5) 将该公式向下复制直到单元格A10000。 在列C中显示列A中的最大值和最小值。...配置直方图数据 列F中包含要在新的直方图中显示的数据,我们使用FREQUENCY函数来生成这些数据。

    2.1K10

    【动手学深度学习笔记】之线性回归实现

    #需要导入的库import torch #张量计算from IPython import display #嵌入显示图像from matplotlib import pyplot as plt #绘制图像...其中随机噪声项服从均值为0、标准差为0.01的正态分布,代表列无意义的干扰 程序实现 #生成数据集num_inputs = 2 #特征数,数据集的列数num_examples = 1000 #样本数,数据集的行数...,标准差为0.01正态分布b = torch.zeros(1,dtypr = float32)#生成一个大小为1的全0矩阵 定义模型 将前文所述的矩阵形式模型 转换为程序形式 def linreg(X,...l = loss(net(X,w,b),y).sum() #首先计算模型得到的值,再计算损失函数值,由于直接计算得到的是向量的形式,无法直接求梯度,因此对他进行加和运算。...l = loss(net(X,w,b),y).sum() #首先计算模型得到的值,再计算损失函数值,由于直接计算得到的是向量的形式,无法直接求梯度,因此对他进行加和运算。

    66350

    【干货】计算机视觉实战系列06——用Python做图像处理

    我们需要对中心点取值进行变换,变换规则为:中心处点的值取附近所有点值的平均值,由图中像素点可得:中心点的像素值就变成了1。在数值上,这种操作可以看成是一种平滑化的操作。...在图形上,正态分布是一种钟形曲线,越接近中心,取值越大,越远离中心,取值越小。 如下图所示: ? 公式为: ? 其中,μ是x的均值,σ是x的标准差(评论提醒)。...里面的参数中,r就是模糊半径,而在二维坐标系中,模糊半径就是x^2+y^2,σ 是正态分布的标准偏差,所以代入通项公式我们就可以得到二维的高斯函数公式。 将N=2带入得到二维高斯函数的方程: ?...本质上,图像的模糊就是将(灰度)图像I和一个高斯核进行卷积操作: ? 其中“*”表示卷积操作; ? 是标准差为 ? 的二维高斯核,定义为: ?...上面gaussian_filters()函数的最后一个参数表示标准差。 图中显示了随着 ? 的增加,一幅图像被模糊的程度。 ? 越大,处理后的图像细节丢失越多。

    1.1K140

    《python数据分析与挖掘实战》笔记第3章

    在常见的数据挖掘工作中,脏数据包括如下内容: 缺失值 异常值 不一致的值 重复数据及含有特殊符号(如#、¥、*)的数据 缺失值的处理分为删除存在缺失值的记录、对可能值进行插补和不处理。...如发展速度、增长速度等。 3.2.3、统计量分析 用统计指标对定量数据进行统计描述,常从集中趋势和离中趋势两个方面进行分析。...(2)标准差 标准差度量数据偏离均值的程度 (3) 变异系数 变异系数度量标准差相对于均值的离中趋势 变异系数主要用来比较两个或多个具有不同单位或不同波动幅度的数据集的离中趋势。...skew() 样本值的偏度(三阶矩) Pandas kurt() 样本值的峰度(四阶矩) Pandas describe() 给出样本的基本描述(基本统计量如均值、标准差等) Pandas corr...实例:绘制样本数据的箱形图,样本由两组正态分布的随机数据组成。其中,一组数据均值为0,标准差为1,另一组数据均值为1,标准差为1。绘制结果如图3-16所示。

    2.2K20

    统计学最重要的10个概念【附Pyhon代码解析】

    中位数 中位数是将数据排序后处于中间位置的值。对于奇数个数据,中位数是最中间的数;对于偶数个数据,中位数是中间两个数的平均值。中位数不受极端值影响,因此在存在异常值时比平均值更稳定。...标准差 标准差衡量数据的离散程度,反映数据分布的波动性。它是方差的平方根,表示数据平均偏离均值的程度。标准差越大,数据越分散;标准差越小,数据越集中。...抽样分布 抽样分布描述统计量(如样本均值)在重复抽样中的分布情况。中心极限定理指出,当样本量足够大时,样本均值的抽样分布近似服从正态分布。...样本均值的标准差: 0.0995 理论标准误差: 0.0999 代码还会生成一个样本均值的直方图,展示其近似正态分布的特性。...通过这些详细的解释和代码示例,您应该能更深入地理解这10个重要的统计学概念。这些概念为数据分析和科学研究提供了坚实的基础。

    15310

    ​常见的8个概率分布公式和可视化

    a 和 b 之间连续均匀分布的概率密度函数 (PDF) 如下: 让我们看看如何在 Python 中对它们进行编码: import numpy as np import matplotlib.pyplot...正态分布的概率密度函数如下: σ 是标准偏差,μ 是分布的平均值。要注意的是,在正态分布中,均值、众数和中位数都是相等的。...99.7% 的数据落在平均值的三个标准差范围内。 对数正态分布 对数正态分布是对数呈正态分布的随机变量的连续概率分布。...参数为 n 和 p 的二项式分布是在 n 个独立实验序列中成功次数的离散概率分布,每个实验都问一个是 - 否问题,每个实验都有自己的布尔值结果:成功或失败。 本质上,二项分布测量两个事件的概率。...对于较高的 n 值,t 分布更接近正态分布。

    1.1K40

    ​常见的8个概率分布公式和可视化

    a 和 b 之间连续均匀分布的概率密度函数 (PDF) 如下: 让我们看看如何在 Python 中对它们进行编码: import numpy as np import matplotlib.pyplot...正态分布的概率密度函数如下: σ 是标准偏差,μ 是分布的平均值。要注意的是,在正态分布中,均值、众数和中位数都是相等的。...99.7% 的数据落在平均值的三个标准差范围内。 对数正态分布 对数正态分布是对数呈正态分布的随机变量的连续概率分布。...参数为 n 和 p 的二项式分布是在 n 个独立实验序列中成功次数的离散概率分布,每个实验都问一个是 - 否问题,每个实验都有自己的布尔值结果:成功或失败。 本质上,二项分布测量两个事件的概率。...对于较高的 n 值,t 分布更接近正态分布。

    73520

    通过Pandas实现快速别致的数据分析

    Pandas似乎只是擅长数据处理方面,但它通过提供statsmodels中的标准统计方法和matplotlib中的绘图方法,使其成为了强大易用的数据分析工具。...print(data.describe()) 这将显示我们数据框中9个属性的各个属性详细分布信息表。...具体包括:数量、平均数、标准差、最小值、最大值、第一四分位数、第二四分位数(中位数)、第三四分位数。 我们可以查看这些统计数据,并开始注意与我们的问题有关的有趣事实。...如平均怀孕次数为3.8次、最小年龄为21岁,以及有些人的体重指数为0,这种不可能的数据是某些属性值应该标记为缺失值的标志。 点击链接,详细了解数据框的描述统计功能。...我们观察了箱线图和直方图中数据的分布情况、与类属性相比较的属性分布,以及最后在成对散点图矩阵中属性之间的关系。

    2.6K80
    领券