在Keras DQN中实现梯度上升,可以通过以下步骤完成:
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
model = Sequential()
model.add(Dense(24, input_shape=(state_size,), activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(action_size, activation='linear'))
这里的state_size是状态空间的维度,action_size是动作空间的维度。
model.compile(loss='mse', optimizer=Adam(lr=learning_rate))
这里的learning_rate是学习率。
class ReplayBuffer():
def __init__(self, buffer_size):
self.buffer = []
self.buffer_size = buffer_size
def add(self, experience):
if len(self.buffer) + len(experience) >= self.buffer_size:
self.buffer[0:(len(experience) + len(self.buffer)) - self.buffer_size] = []
self.buffer.extend(experience)
def sample(self, batch_size):
return np.reshape(np.array(random.sample(self.buffer, batch_size)), [batch_size, 5])
这里的experience是一个包含状态、动作、奖励、下一个状态和完成标志的元组。
def train(model, target_model, buffer):
minibatch = buffer.sample(batch_size)
states = minibatch[:, 0]
actions = minibatch[:, 1]
rewards = minibatch[:, 2]
next_states = minibatch[:, 3]
dones = minibatch[:, 4]
targets = model.predict(states)
next_q_values = target_model.predict(next_states)
for i in range(batch_size):
targets[i, actions[i]] = rewards[i] + gamma * np.max(next_q_values[i]) * (1 - dones[i])
model.fit(states, targets, epochs=1, verbose=0)
这里的gamma是折扣因子,用于调整未来奖励的重要性。
target_model = Sequential()
target_model.add(Dense(24, input_shape=(state_size,), activation='relu'))
target_model.add(Dense(24, activation='relu'))
target_model.add(Dense(action_size, activation='linear'))
target_model.set_weights(model.get_weights())
for episode in range(num_episodes):
state = env.reset()
done = False
while not done:
action = choose_action(state)
next_state, reward, done, _ = env.step(action)
buffer.add((state, action, reward, next_state, done))
state = next_state
if len(buffer.buffer) > batch_size:
train(model, target_model, buffer)
if episode % update_target_freq == 0:
target_model.set_weights(model.get_weights())
这里的choose_action函数用于根据当前状态选择动作。
以上是在Keras DQN中实现梯度上升的基本步骤。在实际应用中,你可能还需要根据具体问题进行一些调整和优化。
领取专属 10元无门槛券
手把手带您无忧上云