首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在DNN分类器中使用未标记的测试数据

在DNN(深度神经网络)分类器中使用未标记的测试数据的常见方法是使用半监督学习或自监督学习技术。这些方法可以利用未标记的数据来提高分类器的性能。

半监督学习是一种利用有标签和无标签数据进行训练的技术。在DNN分类器中,可以使用无标签的测试数据来扩充训练数据集,从而提高分类器的泛化能力。一种常见的方法是使用无监督的预训练技术,如自编码器或生成对抗网络(GAN),来学习数据的特征表示。然后,将这些学习到的特征用于有监督的微调过程,以提高分类器的性能。

自监督学习是一种利用数据本身的结构进行训练的技术。在DNN分类器中,可以使用未标记的测试数据来创建虚拟的标签,然后将其用于训练分类器。一种常见的方法是使用自监督学习技术,如对比学习或生成模型,来学习数据的表示。然后,将这些学习到的表示用于有监督的微调过程,以提高分类器的性能。

除了半监督学习和自监督学习,还有其他方法可以在DNN分类器中使用未标记的测试数据。例如,可以使用迁移学习技术将在其他任务上训练的模型应用于当前任务。这样可以利用未标记的测试数据来提高分类器的性能。

在腾讯云中,可以使用腾讯云机器学习平台(https://cloud.tencent.com/product/tiia)来构建和训练DNN分类器。该平台提供了丰富的机器学习工具和算法,可以帮助用户有效地处理未标记的测试数据,并提高分类器的性能。

总结起来,使用未标记的测试数据在DNN分类器中可以通过半监督学习、自监督学习、迁移学习等技术来提高分类器的性能。腾讯云机器学习平台是一个可以使用的工具,可以帮助用户实现这些技术并构建高性能的DNN分类器。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • SEMI-SUPERVISED OBJECT DETECTION IN REMOTE SENSING IMAGES USING GENERATIVE ADVERSARIAL NETWORKS

    目标检测是计算机视觉中一项具有挑战性的任务。现在,许多检测网络在应用大型训练数据集时可以获得良好的检测结果。然而,为训练注释足够数量的数据往往很费时间。为了解决这个问题,本文提出了一种基于半监督学习的方法。 半监督学习用少量的注释数据和大量的未注释数据来训练检测网络。 在提出的方法中,生成对抗网络被用来从未注释的数据中提取数据分布。提取的信息随后被用于提高检测网络的性能。实验表明,与只使用少数注释数据的监督学习相比,本文的方法大大改善了检测性能。实验结果证明,当训练数据集中只有少数目标物体被注释时,有可能取得可接受的检测结果。

    02

    GPB|DeepCPI:基于深度学习的化合物和蛋白质相互作用预测框架

    这次给大家介绍清华大学交叉信息研究院的曾坚阳教授的论文“DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening”。分析化合物与蛋白质的相互作用(Compound-Protein Interactions, CPIs)和新型药物靶标相互作用(Drug Target Interactions, DTIs)在硅药研发过程中起重要作用,从大规模未标记的化合物和蛋白质预测新的CPI有利于高效的药物研发。基于此问题,曾坚阳教授课题组将无监督的表征学习和特征嵌入与深度学习方法相结合,提出了一种自动学习化合物和蛋白质的隐式但具有表达力的低维特征评估大型数据库中测得CPI的计算框架DeepCPI。作者在方法中引入了(i)语义分析和Word2vec 方法来获得化合物和蛋白质低维特征表示(ii)多模态深度神经网络(DNN)分类器预测相互作用概率,使得其模型比现有模型更好地可以借助大规模无标签数据学习化合物与蛋白质的低维特征,实现预测未知的新型CPI或DTI。

    01

    使用10几行Python代码,快速建立视觉模型识别图像

    视觉 进化的作用,让人类对图像的处理非常高效。 这里,我给你展示一张照片。 📷 如果我这样问你: 你能否分辨出图片中哪个是猫,哪个是狗? 你可能立即会觉得自己遭受到了莫大的侮辱。并且大声质问我:你觉得我智商有问题吗?! 息怒。 换一个问法: 你能否把自己分辨猫狗图片的方法,描述成严格的规则,教给计算机,以便让它替我们人类分辨成千上万张图片呢? 对大多数人来说,此时感受到的,就不是羞辱,而是压力了。 如果你是个有毅力的人,可能会尝试各种判别标准:图片某个位置的像素颜色、某个局部的边缘形状、某个水平位置的连续颜

    09

    图像识别泛化能力人机对比:CNN比人类还差得远

    我们通过 12 种不同类型的图像劣化(image degradation)方法,比较了人类与当前的卷积式深度神经网络(DNN)在目标识别上的稳健性。首先,对比三种著名的 DNN(ResNet-152、VGG-19、GoogLeNet),我们发现不管对图像进行怎样的操作,几乎所有情况下人类视觉系统都更为稳健。我们还观察到,当信号越来越弱时,人类和 DNN 之间的分类误差模式之间的差异会逐渐增大。其次,我们的研究表明直接在畸变图像上训练的 DNN 在其所训练的同种畸变类型上的表现总是优于人类,但在其它畸变类型上测试时,DNN 却表现出了非常差的泛化能力。比如,在椒盐噪声上训练的模型并不能稳健地应对均匀白噪声,反之亦然。因此,训练和测试之间噪声分布的变化是深度学习视觉系统所面临的一大关键难题,这一难题可通过终身机器学习方法而系统地解决。我们的新数据集包含 8.3 万个精心度量的人类心理物理学试验,能根据人类视觉系统设置的图像劣化提供对终身稳健性的有用参考。

    02

    机器学习中如何选择分类器

    在机器学习中,分类器作用是在标记好类别的训练数据基础上判断一个新的观察样本所属的类别。分类器依据学习的方式可以分为非监督学习和监督学习。 非监督学习顾名思义指的是给予分类器学习的样本但没有相对应类别标签,主要是寻找未标记数据中的隐藏结构。 监督学习通过标记的训练数据推断出分类函数,分类函数可以用来将新样本映射到对应的标签。在监督学习方式中,每个训练样本包括训练样本的特征和相对应的标签。监督学习的流程包括确定训练样本的类型、收集训练样本集、确定学习函数的输入特征表示、确定学习函数的结构和对应的学习算法、完成整

    08
    领券