我相信大家经常会使用Excel对数据进行排序。有时候我们会按照两个条件来对数据排序。假设我们手上有下面这套数据,9个人,第二列(score)为他们的考试成绩,第三列(code)为对应的评级。...,并且还可以再进一步在每一个评级里面再继续根据分数排序。...我们只需要先根据code来进行升序排序,然后次要关键字再根据分数进行降序排序。 我们就会得到如下结果 那么这个过程怎么在R里面实现呢?今天我们就来探讨一下。...主要用的是R中的order这个函数。...#读入文件,data.txt中存放的数据为以上表格中展示的数据 file=read.table(file="data.txt",header=T,sep="\t") #先按照code升序,再按照Score
在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。 我们知道Python按照某些列去重,可用drop_duplicates函数轻松处理。...本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =...三、把代码推广到多列 解决多列组合删除数据框中重复值的问题,只要把代码中取两列的代码变成多列即可。...numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv
=True) 按照多列去重实例 一、drop_duplicates函数介绍 drop_duplicates函数可以按某列去重,也可以按多列去重。...导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv('name.csv...从结果知,参数keep=False,是把原数据copy一份,在copy数据框中删除全部重复数据,并返回新数据框,不影响原始数据框name。...原始数据中只有第二行和最后一行存在重复,默认保留第一条,故删除最后一条得到新数据框。 想要根据更多列数去重,可以在subset中添加列。...但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。 如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-
在对海量数据进行分析的过程中,可能需要对数据进行排序操作。 本节教大家如何在python中对数据框进行一些排序操作。...本文目录 总结sort_values函数的用法 按年龄对行进行升序排列 按年龄对行进行降序排列 按年龄升序身高降序排列数据框 对列进行排序 注意:本文沿用数据分析第一课【Python数据分析—数据建立...1 总结sort_values函数的用法 python中默认按行索引号进行排序,如果要自定义数据框的排序,可以用sort_values函数进行重定义排序。...by后面为要排序的列,可以是一列,也可以是多列。...第二种办法是利用axis=1对列进行排序,不过这种排序需要某一行的值是同种类型的,可以比较。
查看/检查数据 df.head(n) 数据框的前n行 df.tail(n) 数据框的后n行 df.shape() 行数和列数 df.info() 索引,数据类型和内存信息 df.describe()...col] 返回一维数组col的列 df[[col1, col2]] 作为新的数据框返回列 s.iloc[0] 按位置选择 s.loc['index_one'] 按索引选择 df.iloc[0,:] 第一行...按降序对值排序 df.sort_values([col1,ascending=[True,False]) 将col1按升序排序,然后按降序排序col2 df.groupby(col) 从一列返回一组对象的值...df.groupby([col1,col2]) 从多列返回一组对象的值 df.groupby(col1)[col2] 返回col2中的值的平均值,按col1中的值分组(平均值可以用统计部分中的几乎任何函数替换...df.describe() 数值列的汇总统计信息 df.mean() 返回所有列的平均值 df.corr() 查找数据框中的列之间的相关性 df.count() 计算每个数据框的列中的非空值的数量 df.max
选择多列。ix、iloc、loc方法都可使用。 只不过ix和loc方法,行索引是前后都包括的,而列索引则是前包后不包(与列表索引一致)。 iloc方法则和列表索引一致,前包后不包。...创建列。可以直接通过赋值完成,也可通过数据框的assign来完成赋值,不过后一种方法需要赋值给新表才能生效。...删除列。使用数据框的方法drop。...05 排序 Pandas的排序方法有以下三种。 sort_values、sort_index、sortlevel。 第一个表示按值排序,第二个表示按索引排序,第三个表示按级别排序。...# 按用户年龄降序排序,last表示缺失值数据排在最后面(first) print(df.sort_values('age', ascending=False, na_position='last'))
在多列上对 DataFrame 进行排序 按升序按多列排序 更改列排序顺序 按降序按多列排序 按具有不同排序顺序的多列排序 根据索引对 DataFrame 进行排序 按升序按索引排序 按索引降序排序 探索高级索引排序概念...通常,您希望通过一列或多列的值对 DataFrame 中的行进行排序: 上图显示了使用.sort_values()根据highway08列中的值对 DataFrame 的行进行排序的结果。...在多列上对 DataFrame 进行排序 在数据分析中,通常希望根据多列的值对数据进行排序。想象一下,您有一个包含人们名字和姓氏的数据集。...您可以看到更改列的顺序也会更改值的排序顺序。 按降序按多列排序 到目前为止,您仅对多列按升序排序。在下一个示例中,您将根据make和model列按降序排序。...在本教程中,您学习了如何: 按一列或多列的值对Pandas DataFrame进行排序 使用ascending参数更改排序顺序 通过index使用对 DataFrame 进行排序.sort_index(
Pandas 排序方法入门 快速提醒一下,DataFrame是一种数据结构,行和列都带有标记的轴。您可以按行或列值以及行或列索引对 DataFrame 进行排序。...通常,您希望通过一列或多列的值对 DataFrame 中的行进行排序: 上图显示了使用.sort_values()根据highway08列中的值对 DataFrame 的行进行排序的结果。...在多列上对 DataFrame 进行排序 在数据分析中,通常希望根据多列的值对数据进行排序。想象一下,您有一个包含人们名字和姓氏的数据集。...您可以看到更改列的顺序也会更改值的排序顺序。 按降序按多列排序 到目前为止,您仅对多列按升序排序。在下一个示例中,您将根据make和model列按降序排序。...在本教程中,您学习了如何: 按一列或多列的值对Pandas DataFrame进行排序 使用ascending参数更改排序顺序 通过index使用对 DataFrame 进行排序.sort_index(
数据操作中排序和去重是比较常见的数据操作,本专题对排序和去重做专门介绍,并且给出一种不常用却比较有启发意义的示例:多列无序去重 目 录 1 排序 1.1 sort 单列排序返回值 1.2 order...单列排序返回索引 1.3 rank 单列排序返回“秩” 1.4 arrage 多列排序 1.5、reorder 用在绘图中 2 去重 2.1 unique 单向量/多列完全重复去重 2.2 duplicated...函数 3 多列无序去重 说明:多列无序重复比较值得学习 正 文 1 排序 1.1 sort 单列排序返回值 总结:sort是直接对向量排序,返回原数值 #sort相关语法 sort(x, decreasing...x进行排序 #当遇到矩阵时,order将按列对原始矩阵进行排序,并且返回其索引向量 > set.seed(416) > x <- round(runif(10,1,20)) > y <- matrix...[1] 5.0 6.5 4.0 6.5 10.0 8.0 2.0 1.0 3.0 9.0 1.4 arrage 多列排序 总结:arrange是dplyr包中的排序函数,可对数据框以列的形式进行因子排序
pd.DataFrame()中的常用参数: data:可接受numpy中的ndarray,标准的字典,dataframe,其中,字典的值可以为Series,arrays,常数或列表 index:数据框行的索引值...,到length(数据框) columns:数据框列的标签,可用于索引数据框,默认同index dtype:强制数据框内数据转向的数据类型,如(float64) copy:是否对输入的数据采取复制的方法生成数据框...2.数据框内容的索引 方式1: 直接通过列的名称调取数据框的中列 data['c'][2] ?...;'outer'表示以两个数据框联结键列的并作为新数据框的行数依据,缺失则填充缺省值 lsuffix:对左侧数据框重复列重命名的后缀名 rsuffix:对右侧数据框重复列重命名的后缀名 sort:表示是否以联结键所在列为排序依据对合并后的数据框进行排序...11.数据框的排序 df.sort_values()方法对数据框进行排序: 参数介绍: by:为接下来的排序指定一列数据作为排序依据,即其他列随着这列的排序而被动的移动 df#原数据框 ?
例如可以从dtype的返回值中仅获取类型为bool的列。 3 数据切片和切块 数据切片和切块是使用不同的列或索引切分数据,实现从数据中获取特定子集的方式。...常见的数据切片和切换的方式如表3所示: 表3 Pandas常用数据切分方法 方法用途示例示例说明[['列名1', '列名2',…]]按列名选择单列或多列In: print(data2[['col1','...Out: col1 col2 col3 0 2 a True 1 1 b True选择col3中值为True的所有记录多列单条件以所有的列为基础选择符合条件的数据...1 0 col2 a b a行索引、列名以及数据相互调换sort_values按值排序,默认为正序,可通过ascending=False指定倒序排序In: print(data2.sort_values...(['col1'])) Out: col1 col2 2 0 a 1 1 b 0 2 a按colo1列排序sort_index按索引排序,默认为正序,
x[,4] # 引用第一列 x[2:3,2:3] # 行列混合引用(矩阵) x[行初始索引:行终止索引,列初始索引:列终止索引] # > x[1,4] # 值引用 x[行索引,...[2,] 10 11 names(df)[5] 列重命名(二位数据框,变量)names() ############ (多)数据(关联)合并 ###...&去重 补充学习https://mp.weixin.qq.com/s/0D9TyYqETCuIAWI0f_LvIQ # 排序 sort # 单列排序返回值 order # 单列排序返回索引 rank #...单列排序返回“秩” arrage # 多列排序 reorder # 用在绘图中 #去重 unique # 单向量/多列完全重复去重 duplicated # 函数 ############ 数据筛选...:(excel透视表反向操作) spread # 长数据转为宽数据:(excel透视表功能) unit # 多列合并为一列: separat # 将一列分离为多列
df.loc[row_labels, column_labels] # 通过整数索引选择特定的行和列 df.iloc[row_indices, column_indices] # 根据条件选择数据框中的行和列...它提供了各种函数来过滤、排序和分组DataFrame中的数据。...') # 按多列对DataFrame进行排序 df_sorted = df.sort_values(['column_name1', 'column_name2'], ascending=[True,...() # 按多列对DataFrame进行分组并计算另一列的总和 grouped_data = df.groupby(['column_name1', 'column_name2'])['other_column...# 计算某列的最大值 df['column_name'].max() # 计算某列中非空值的数量 df['column_name'].count() # 计算列中某个值的出现次数 df['column_name
axis: 排序默认是按行索引排序(对每一行数据排序),axis参数默认为0,将axis参数设置成1则按列索引排序(对每一列数据排序)。不过,在实际应用中,对列排序的情况是极少的。...无返回值时不能链式调用,如调用head(),将inplace设置成True时要注意。 2. 按多重索引进行排序 ?...如果对行排序,by参数必须传入列索引中的值,如果对列排序,by参数必须传入行索引中的值。 因为DataFrame中存储的每一列数据类型通常不一样,有些数据类型之间不支持排序,所以不一定能对列排序。...na_position参数只支持按单列排序时使用,在按多重索引或按多列排序时无效。...按多个列进行排序 ? 给by参数传入多个列索引值时(用列表的方式),即可以对多个列进行排序。当第一列中有相等的数据时,依次按后面的列进行排序。ascending参数的用法与按多重索引排序一样。
df[col] # 根据列名,并以Series的形式返回列 df[[col1,col2]] # 以DataFrame形式返回多列 s.iloc[0] # 按位置选取数据 s.loc['index_one...'] # 按索引选取数据 df.iloc[0,:] # 返回第⼀⾏ df.iloc[0,0] # 返回第⼀列的第⼀个元素 df.loc[0,:] # 返回第⼀⾏(索引为默认的数字时,⽤法同df.iloc...df.at[5,"col1"] # 选择索引名称为5,字段名称为col1的数据 df.iat[5,0] # 选择索引排序为5,字段排序为0的数据 数据处理 这里为大家总结16个常见用法。...df.sort_index().loc[:5] # 对前5条数据进⾏索引排序 df.sort_values(col1) # 按照列col1排序数据,默认升序排列 df.sort_values(col2...col2降序排列数据 df.groupby(col) # 返回⼀个按列col进⾏分组的Groupby对象 df.groupby([col1,col2]) # 返回⼀个按多列进⾏分组的Groupby对象
也就回到了开始创建的数据框test。 separate&&unite 将同一列中的内容分为两列内容。或将两列内容合并为同一列内容。 首先还是可以创建一个数据框。...对于即将合并的新列,需要使用引号;但对于想要合并的多个列名,可以不用使用引号。sep 参数设定多列合并后不同数据分隔使用的分割符。...到底需不需要引号,对于要处理的列(无论分离还是合并)不用;对于待生成的列则需要。 处理缺失值 创建一个存在NA 的数据框。...A 1 2 B 0 3 C 3 4 4 5 E 5 # 还可以写成 X$X2 <- replace_na(list(X2=0)) 通过fill,可以将指定列中的缺失值替换为该缺失值所在行的上一行中的数据...4.498195 3.871712 9.152436 3.468464 > identical(pull(g, sample1), g$sample1) [1] TRUE 小进阶 count 计算向量或数据框中某列的重复值
:数据框的构成向量的变量名,顺序即为生成的数据框列的顺序 row.names:对每一行命名的向量 stringAsFactors:是否将数据框中字符型数据类型转换为因子型,默认为FALSE > a <-...方式1: 按列的名称进行索引 > df$a [1] 1 2 3 4 5 6 7 8 9 10 方式2: 按对应轴的标号进行索引 > df[2] b a 10 b 9 c...在R中,通过内联键合并数据框的函数为merge(),其主要参数如下: by:对两个数据框建立内联的共有列(元素交集部分不能为空集),以此列为依据,返回内联列取交集后剩下的样本行 sort:是否对合并后的数据框以内联列为排序依据进行排序...’ID‘列为内联列进行合并,得到结果如下,与Python不同的是,R中的数据框合并的原则是不返回含有缺失值的行 > merge(df1,df2,by='ID') ID a b 1 a 2...()以及数据框元素删减方法联合起来完成去重的工作,先依次介绍这两个方法: duplicated(),用于检测输入的列中有无符合元素重复的行(若输入多列则检测是否存在行的多列组合方式中有无满足重复的行)
排序是数据处理和分析中的基本操作。...虽然 NumPy 提供了高效的内置排序函数(如 numpy.sort 和 numpy.argsort),但有时需要实现自定义的排序逻辑,以满足特定需求,例如对数组中的特定列、组合条件或自定义顺序进行排序...按奇偶性排序后的数组: [4 6 8 1 3 7 9] 方法三:多键排序 多键排序类似于数据库中的多列排序,可以通过 numpy.lexsort 实现。...根据索引重排数组 sorted_arr = arr[sorted_indices] print("按绝对值排序后的数组:", sorted_arr) 输出: 按绝对值排序后的数组: [-2 -3...总结 本文详细介绍了 Python NumPy 中实现自定义排序算法的方法,包括基于索引、条件、多键排序以及自定义函数的排序。通过这些方法,可以灵活地满足不同场景下的排序需求。
2.DataFrame(数据框):DataFrame是Pandas库中的二维表格数据结构,类似于电子表格或SQL中的表。它由行和列组成,每列可以包含不同的数据类型。...DataFrame可以从各种数据源中创建,如CSV文件、Excel文件、数据库等。 3.Index(索引):索引是Pandas中用于标识和访问数据的标签。它可以是整数、字符串或其他数据类型。...可以使用标签、位置、条件等方法来选择特定的行和列。 5.缺失数据处理:Pandas具有处理缺失数据的功能,可以检测、删除或替换数据中的缺失值。...6.数据聚合和分组:Pandas可以通过分组和聚合操作对数据进行统计和汇总。它支持常见的统计函数,如求和、均值、最大值、最小值等。...df[df['Name'].isin(['Alice', 'Bob'])] 数据排序和排名 # 按照某一列的值排序 df.sort_values('Age') # 按照多列的值排序 df.sort_values
即使索引有多列这样的情况下,只要这些列中有一列含有null,该列就会从索引中排除。也就是说如果某列存在空值,即使对该列建索引也不会提高性能。 2....联接列 对于有联接的列,即使最后的联接值为一个静态值,优化器是不会使用索引的。...Order by语句 ORDER BY语句决定了Oracle如何将返回的查询结果排序。Order by语句对要排序的列没有什么特别的限制,也可以将函数加入列中(象联接或者附加等)。...任何在Order by语句的非索引项或者有计算表达式都将降低查询速度 2、应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如select id from...3、最好不要给数据库留NULL,尽可能的使用 NOT NULL填充数据库.NULL值也是可能会需要占用空间的,一些定长的数据类型即使数据为NULL也是会占用空间的。
领取专属 10元无门槛券
手把手带您无忧上云