在加法运算中,得到两个参数的最终分数的方法是将两个参数相加。具体步骤如下:
这个过程非常简单,只需要将两个参数相加即可。无论参数是整数、小数、负数还是分数,加法运算都适用。
在云计算领域中,加法运算通常不是云计算的主要应用场景。云计算更多地涉及到资源的管理、存储、计算、网络通信等方面。如果您有其他关于云计算或其他领域的问题,我将非常乐意为您解答。
选自KDNuggets 机器之心编译 参与:刘晓坤、蒋思源 在这篇文章中,我们希望读者能对支持向量机(SVM)的工作方式有更高层次的理解。因此本文将更专注于培养直觉理解而不是严密的数学证明,这意味着我们会尽可能跳过数学细节而建立其工作方式的直观理解。 自从 Statsbot 团队发表了关于(时间序列的异常检测(time series anomaly detection)的文章之后,很多读者要求我们介绍支持向量机方法。因此 Statsbot 团队将在不使用高深数学的前提下向各位读者介绍 SVM,并分享有用的程
在这片博客中,我将介绍队友(Aron,Ashish,Gabriel)和我如何完成我们的第一个机器学习项目。写这篇博客的目的是为了记录——记录下我作为一名有抱负的数据科学家的旅程。同时,这篇博客也是为了写下逐步完善预测模型背后的思维和推理过程。由于我的目的是建立一个可以快速使用的通用工作流程,所以我将尽可能的简化推理过程。我的最终目标是当某一天再次回顾这个数据集时,可以应用更好的预测模型,看到自己原本可以做出哪些改进,并且能看到自己作为一个数据科学家的成长。
给定一个表示分数加减运算的字符串 expression,你需要返回一个字符串形式的计算结果。
本文讲解的是怎么实现一个工具库并打包发布到npm给大家使用。本文实现的工具是一个分数计算器,大家考虑如下情况:
明敏 衡宇 发自 凹非寺 量子位 | 公众号 QbitAI “怎么培养数学逻辑思维?来点编程试试?” 大概这是很多人的既有认知,毕竟感觉程序员们的数学都挺好的。 巴特,反转来了。 来自巴黎大学的研究人员发现,小学生改用编程课学数学后,对成绩不仅没有明显帮助,甚至会产生一些负面影响。 在欧几里得除法、加法分解、分数运算几个方面,影响范围为-0.16 ~ -0.21(值为负数即代表表现不如标准组)。 而且编程软件的可视化界面,还影响了孩子的注意力集中能力。 没错,这里说的就是风靡少儿编程圈的Scratch,它
8月15日上海交通大学世界一流大学研究中心发布2015年“世界大学学术排名”。今年,哈佛大学蝉联榜首,剑桥大学排名第2,第3-5名依次是牛津大学、麻省理工学院和斯坦福大学。每年我们都会看到许许多多的排行榜,比如胡润富人排行榜,财富500强,慈善排名,城市竞争力排行,MBA商学院排名等,那么排行榜怎么做出来的呢?今天小编从技术角度为大家分享一下如何利用SPSS做排行榜技术排名。 综合排名是一项系统综合评估研究方法,焦点是如何科学、客观地将一个多维度、多评价指标问题综合成为一个单指标形式,
8月15日上海交通大学世界一流大学研究中心发布2015年“世界大学学术排名”。今年,哈佛大学蝉联榜首,剑桥大学排名第2,第3-5名依次是牛津大学、麻省理工学院和斯坦福大学。每年我们都会看到许许多多的排行榜,比如胡润富人排行榜,财富500强,慈善排名,城市竞争力排行,MBA商学院排名等,那么排行榜怎么做出来的呢?今天小编从技术角度为大家分享一下如何利用SPSS做排行榜技术排名。 综合排名是一项系统综合评估研究方法,焦点是如何科学、客观地将一个多维度、多评价指标问题综合成为一个单指标形式,利用产生的综合
整数,令人惊叹于它的简单。两个整数相除,例如4/3,得到一个浮点数,并且(4/3)*3的结果也是浮点数4.0。即便你没有定义浮点数,在进行除法运算的时候,它会自动出现。
在计算机中,小数点并没有用专门的器件去表示,而是按照一种约定的方式,统一存储在寄存器单元中的。算数逻辑运算单元(ALU)是CPU的组成部分,负责算数和逻辑的运算。那么,ALU究竟是如何工作的呢? 这就是本文主要探讨的内容:
作者:才云科技Caicloud,郑泽宇,顾思宇 要将深度学习应用到实际问题中,一个非常大的问题在于训练深度学习模型需要的计算量太大。比如Inception-v3模型在单机上训练到78%的正确率需要将近半年的时间 ,这样的训练速度是完全无法应用到实际生产中的。为了加速训练过程,本章将介绍如何通过TensorFlow利用GPU或/和分布式计算进行模型训练。本文节选自《TensorFlow:实战Google深度学习框架》第十章。 本文将介绍如何在TensorFlow中使用单个GPU进行计算加速,也将介绍生成T
给定一个数组 A 和一些查询 Li,Ri, 求数组中第 Li 至第Ri个元素之和。
在我们常见的JavaScript数字运算中,小数和大数都是会让我们比较头疼的两个数据类型。
xgboost 已然火爆机器学习圈,相信不少朋友都使用过。要想彻底掌握xgboost,就必须搞懂其内部的模型原理。这样才能将各个参数对应到模型内部,进而理解参数的含义,根据需要进行调参。 本文的目的就是让大家尽可能轻松地理解其内部原理。主要参考文献是陈天奇的这篇文章introduction to xgboost(https://xgboost.readthedocs.io/en/latest/model.html)。在我看来,这篇文章是介绍xgboost最好的,没有之一。英语好的同学建议直接看英文,若有
本文介绍了GBDT(Gradient Boosting Decision Tree)算法的原理、实现和应用。主要包括了梯度提升决策树的基本思想、实现方法、优化策略和实际应用案例。
一、值,类型和运算符 原文:Values, Types, and Operators 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 部分参考了《JavaScript
如果你对Python很熟悉,你一定会觉得:“哇!这太简单了!”,然后写出以下代码:
虽然张量看起来是复杂的对象,但它们可以理解为向量和矩阵的集合。理解向量和矩阵对于理解张量至关重要。
本文介绍了GBDT和XGBoost两种机器学习算法,包括它们的原理、优缺点以及应用场景。相比传统的机器学习方法,这两种算法在性能和扩展性上具有显著的优势。同时,文章还对一些常见的机器学习算法进行了简要的概述,为相关领域的读者提供了很好的参考和借鉴。
1 Computing on Functions Using Randomized Vector Representations (in brief
不知道各位最近有没有看东京奥运会啊,昨晚看完是被小日子过得不错的日本人气得不行。好家伙,这届奥运会奥林匹克精神我是没看到,抗日精神硬是给我唤醒了,刚打开了金牌排行榜看了一下,还好暂时还是第一。
差分数组是一种高效的算法技巧,它在处理数组区间操作时特别有用。当你需要频繁地对数组的某个区间进行元素的增减操作时,使用差分数组可以显著提高效率。这种方法的核心思想是利用差分来避免对整个区间进行逐个元素的修改。
作者:milter 链接:https://www.jianshu.com/p/7467e616f227
特征选择和超参数调整是每个机器学习任务中的两个重要步骤。大多数情况下,它们有助于提高性能,但缺点是时间成本高。参数组合越多,或者选择过程越准确,持续时间越长。这是我们实际上无法克服的物理限制。我们能做的是充分利用我们的管道。我们面临着不同的可能性,最方便的两个是:
最近我们被客户要求撰写关于预测UCI鲍鱼年龄数据的研究报告,包括一些图形和统计输出。
鲍鱼是一种贝类,在世界许多地方都被视为美味佳肴。 养殖者通常会切开贝壳并通过显微镜计算环数来估计鲍鱼的年龄。因此,判断鲍鱼的年龄很困难,主要是因为它们的大小不仅取决于它们的年龄,还取决于食物的供应情况。而且,鲍鱼有时会形成所谓的“发育不良”种群,其生长特征与其他鲍鱼种群非常不同。这种复杂的方法增加了成本并限制了其普及。我们在这份报告中的目标是找出最好的指标来预测鲍鱼的环,然后是鲍鱼的年龄。
养殖者通常会切开贝壳并通过显微镜计算环数来估计鲍鱼的年龄。因此,判断鲍鱼的年龄很困难,主要是因为它们的大小不仅取决于它们的年龄,还取决于食物的供应情况。而且,鲍鱼有时会形成所谓的“发育不良”种群,其生长特征与其他鲍鱼种群非常不同。这种复杂的方法增加了成本并限制了其普及。我们在这份报告中的目标是找出最好的指标来预测鲍鱼的环,然后是鲍鱼的年龄。
在写单纯形算法时,发现了高精度分数存在bug与不足,所以必须对相关函数进行修改。主要有bug的函数是string DIVIDE_INT(string str1,string str2,int flag),之前是为了运算简单起见,对于特殊除数与被除数进行特定的判断来减小计算复杂度,但是发现存在逻辑bug,判断这些条件之后,未直接返回结果使得程序仍然会执行正常的除法操作,因此对这个bug进行修正。同时为了方便之后的单纯型算法的编写,在此又特意添加两个函数int Compare2Zero()和int Compare2Fraction(Fraction fraction),分别来比肩与0和分数fraction的大小。 在写两阶段单纯形算法时,发现了高精度分数中缺少相关取反和取倒数等接口导致代码出现大量重复代码。因此再次对高精度分数类进行修改。主要实现了分数取反和分数取倒数,并将整体代码进行了优化。由于两个函数过于简单,因此不对这两个函数进行讲解。
我们会通过分享有用的图书馆和资源而不是用复杂的数学知识来带你入门 SVM 。
深度卷积神经网络并不像听起来的那样令人生畏。我将向你们展示我在Google Sheet中做的一个实现。复制它,你可以尝试一下,看看不同的因素如何影响模型的预测。 Google Sheet实现地址:ht
在前面的《reverse原理的魔幻艺术》)(可查看历史消息或点击数学魔术菜单,传送门:Reverse原理背后的数学和魔幻艺术)一文中,我们提到了扑克牌的基础手法dealing,等价于取序列的头部进行reverse这一对称函数关系操作,进而有其二次操作以后恢复的良好性质以得到把预先在给定位置的setting变成预言或者优美画面的魔术效果。关于这个原理,这里还有两点拓展思考:
GBDT是常用的机器学习算法之一,因其出色的特征自动组合能力和高效的运算大受欢迎。
在前面的文章里,我们聊到了计算机的冯·诺依曼架构的 3 个基本原则。其中第 1 个原则是计算机中所有信息都是采用二进制格式的编码。也就是说,在计算机中程序的数据和指令,以及用户输入的所有数据,计算机都需要把它们转换为二进制的格式,才能进行识别和运算。
在做决定时,人们倾向于选择看了更多的选项。注意力如何影响选择过程呢?乘法模型认为注视放大了被关注选项的主观价值;加法模型认为注视增加了一种恒定的、与价值无关的偏见。本研究使用来自多个实验室的6项实验数据验证了两种模型的拟和度。该文由俄亥俄州立大学的研究者完成,发表在期刊Psychological Science上。
【导读】人脸识别技术已经有了非常广泛的应用,国内大规模监控系统背后运用的技术就是人脸识别。
模运算,又称模算数(modular arithmetic),是一个整数的算术系统,其中数字超过一定值后(称为模)会“卷回”到较小的数值,模运算最早是卡尔·弗里德里系·高斯在1801年出版的《算术研究》中书面公开,但在这之前模运算的方法已经深入到人类社会的方方面面,例如在时间上的运用,我国古时的《中国十二时辰图》就把一天划分为子、丑、寅、卯等十二个时辰,每个时辰相当于现在的两个小时,每过完十二个时辰又重新开始计算,这种计数方式的模就为12。 模运算在数论、群论、环论、电脑代数、密码学、计算机科学等学科中都有着
原始数据是一个二维列表,目的是获取该列表中所有元素的具体值。从抽象一点的角度来理解,也可看作是列表解压或者列表降维。
要将深度学习应用到实际问题中,一个非常大的问题在于训练深度学习模型需要的计算量太大。比如Inception-v3模型在单机上训练到78%的正确率需要将近半年的时间 ,这样的训练速度是完全无法应用到实际生产中的。为了加速训练过程,本章将介绍如何通过TensorFlow利用GPU或/和分布式计算进行模型训练。本文节选自《TensorFlow:实战Google深度学习框架》第十章。 本文将介绍如何在TensorFlow中使用单个GPU进行计算加速,也将介绍生成TensorFlow会话(tf.Session)时的一
有一种有效的学习方法叫费曼学习法。它的做法是把你学到的东西系统性的讲述出来,如果别人通过你的描述也能理解其中内容,这说明你对所学知识有了一定程度的掌握。目前我正在系统性的研究区块链技术,因此想借助费曼学习法,把我掌握的信息系统性的输出,一来能帮助自己更好的理解消化知识,另一方面也希望能帮助对这方面有兴趣的同学。当然区块链的技术信息汗牛充栋,相比与其他资料,我觉得我的优势在于能体会初学者的难处,因为我自己就是初学者。
2D 人体姿势估计旨在从整个图像空间中定位所有人体关节。但是想要实现高性能的人姿态估计,高分辨率是必不可少的重要前提,随之带来的是计算复杂度的提升,导致很难将其部署在广泛使用的移动设备上。因此,构建一个轻量且高效的姿势估计网络已经成为目前关注的热点。当前主流的人体姿态估计方式主要是通过2D单峰热图来估计人体关节,而每幅单峰热图都通过一对一维热向量进行投影重构。本文基于这一主流估计方式,研究发现了一种轻量级的高效替代方案——Spatially Unimensional Self-Attention (SUSA)。SUSA 突破了深度可分离 3×3 卷积的计算瓶颈,即降低了1 × 1卷积的计算复杂度,减少了 96% 的计算量,同时仍不损失其准确性。此外,本文将 SUSA 作为主要模块,构建了轻量级的姿态估计神经网络 X-HRNet。在 COCO 基准测试集上进行的大量实验表明了 X-HRNet 的优越性,而综合的消融实验则展示了 SUSA 模块的有效性。
我们小学就学过分数,是指的形如“a / b”的,表达把某对象平均分成b份中的a份那么多的含义的数。自然地,a, b一般都是整数,b != 0;如果a,b仍然是分数的话,也可以等价变形成是整数的式子;如果其中有负整数,则表达的方向概念和整数相同,并且依然负负得正;它和原来的整数一起构成有理数,可以一起参与四则运算满足交换结合分配率。
吴立德老师亲自讲解前馈神经网络和BP算法,让初学者对基础更加了解,对以后网络的改建和创新打下基础,值得好好学习!希望让很多关注的朋友学习更多的基础知识,打下牢固的基石,也非常感谢您们对我们计算机视觉战
今天给大家介绍收录在NIPS2019的文章“Multi-relational Poincaré Graph Embeddings”,该文章由爱丁堡大学信息学院和剑桥三星AI中心合作完成。这篇文章提出了一种多关系庞加莱模型(MuRp),该模型将多关系图数据嵌入到双曲空间庞加莱球中,使得模型在低维链路预测的效果上,明显优于欧几里得空间中相关模型和现有的其他模型。
表达式的type是其最终值的类型。 所以,type函数永远不会表明,表达式的类型是一个名称,因为名称总是求值为它们被赋予的值。
对于一个马上要毕业的大四学生来说,突然由后端转学机器学习,学起来好难,尤其是回归那里,数学好难!!!!!!!! 因为回归的公式太难搞了,这里先整理一手分类的入门算法,KNN。
机器之心报道 编辑:蛋酱、Panda W 大模型出现后,涌现这一术语开始流行起来,通常表述为在小规模模型中不存在,但在大规模模型中存在的能力。但斯坦福大学的研究者对 LLM 拥有涌现能力的说法提出了质疑,他们认为是人为选择度量方式的结果。 「别太迷信大模型的涌现,世界上哪儿有那么多奇迹?」斯坦福大学的研究者发现,大模型的涌现与任务的评价指标强相关,并非模型行为在特定任务和规模下的基本变化,换一些更连续、平滑的指标后,涌现现象就不那么明显了,更接近线性。 近期,由于研究者们观察到大型语言模型(LLMs),如
最近学习java,接触到了回调机制(CallBack)。初识时感觉比较混乱,而且在网上搜索到的相关的讲解,要么一言带过,要么说的比较单纯的像是给CallBack做了一个定义。当然了,我在理解了回调之后,再去看网上的各种讲解,确实没什么问题。但是,对于初学的我来说,缺了一个循序渐进的过程。此处,将我对回调机制的个人理解,按照由浅到深的顺序描述一下,如有不妥之处,望不吝赐教!
【新智元导读】DeepMind最新提出“神经算术逻辑单元”,旨在解决神经网络数值模拟能力不足的问题。与传统架构相比,NALU在训练期间的数值范围内和范围外都得到了更好的泛化。论文引起大量关注,本文附上大神的Keras实现。
选自Medium 作者:Blake West 机器之心编译 卷积神经网络(CNN)经常被用于图像识别、语音处理等领域,是人工智能近年来快速发展的重要组成部分。然而,对于入门人士来说,我们似乎难以理解其
进行两个4bit的二进制数相加,就要用到4个全加器。那么在进行加法运算时,首先准备好的是1号全加器的3个input。而2、3、4号全加器的Cin全部来自前一个全加器的Cout,只有等到1号全加器运算完毕,2、3、4号全加器才能依次进行进位运算,最终得到结果。 这样进位输出,像波浪一样,依次从低位到高位传递, 最终产生结果的加法器,也因此得名为行波进位加法器(Ripple-Carry Adder,RCA)。
领取专属 10元无门槛券
手把手带您无忧上云