在这篇博客中,我们将探讨迁移学习的概念、应用领域,并通过一个代码示例展示如何在图像分类任务中应用迁移学习。 1....迁移学习的应用领域 2.1 计算机视觉 计算机视觉是迁移学习应用最广泛的领域之一。预训练的深度卷积神经网络(如VGG、ResNet、Inception等)通常用于多种视觉任务。...图像分类: 图像分类是计算机视觉中的基本任务之一。迁移学习可以显著提高小数据集上的分类精度。...以下是迁移学习的简要步骤: 1.选择在类似任务上表现优异的预训练模型(如VGG、ResNet、BERT等)。 2.使用深度学习框架(如TensorFlow、PyTorch)加载预训练模型。...3.冻结预训练模型的部分或全部层,以保留其学到的特征。 4.在预训练模型基础上添加新的层,以适应目标任务。 5.选择优化器、损失函数和评估指标,编译模型。
许多被称为“深度学习”的方法已经出现在机器学习和数据科学领域。...简而言之,这个方法规定应该使用一个大型的数据集学习将所感兴趣的对象(如图像,时间序列,客户,甚至是网络)表示为一个特征向量,以适合数据科学研究任务,如分类或聚类。...预训练计算机视觉模型已经在大型ImageNet数据集上进行了训练,并学会了以特征向量的形式生成图像的简单表示。这里,我们将利用这个机制学习一个鸟类分类器。...首先,我们使用单个预训练深度学习模型,然后使用堆叠技术将四个不同的模型组合在一起。然后再对CUB-200数据集进行分类,这个数据集(由vision.caltech提供)包括200种被选中的鸟类图像。...接下来将描述程序中的主要元素。我们省略了导入和部署代码,以支持可读性更好的文本,如有需要请查看完整代码。 让我们从加载数据集开始,用一个效用函数(here)来加载具有指定大小的图像的数据集。
二、研究背景在计算机视觉中,有两种常见的图像自监督学习方法:基于不变性的方法和生成方法。...基于不变性的预训练方法优化编码器,为同一图像的两个或多个视图产生类似的嵌入,图像视图通常使用一组手工制作的数据增强来构建,如随机缩放、裁剪和颜色抖动,以及其他。...基于重构的自监督学习方法也可以在使用生成式架构的EBM框架中进行强制转换;见图2b。生成式架构学习从一个兼容的信号x直接重建信号y,使用一个附加的(可能是潜在的)变量z的解码器网络,以促进重建。...四、图像分类为了证明I-JEPA在不依赖于手工制作的数据增强的情况下学习高级表示,论文报告了使用线性探测和部分微调协议的各种图像分类任务的结果。...特别是,经过预训练后,模型的权值被冻结,并在顶部训练一个线性模型,对Clevr数据集进行对象计数和深度预测。
翻译 | 霍晓燕 校对 | 杨东旭 整理 | 余杭 本部分属该两部系列中的第二部分,该系列涵盖了基于 Keras 对深度学习模型的微调。...有时,我们希望冻结前几层的权重,使它们在整个微调过程中保持不变。假设我们想冻结前 10 层的权重,可以通过以下几行代码来完成: ?...对于分辨率为 224×224 的彩色图像,img_rows=img_cols=224,channel=3。 接下来,我们加载数据集,将其拆分为训练集和测试集,然后开始微调模型: ?...可以在此处找到其他模型(如 VGG19,GoogleLeNet 和 ResNet)。...网络微调操作 如果你是深度学习或者计算机视觉的从业人员,很可能你已经尝试过微调预训练的网络来解决自己的分类问题。
预训练权重是在大规模数据集上训练的深度学习模型的参数。这些数据集通常包括数百万或数十亿的图像或文本数据,例如ImageNet、COCO、Wikipedia等。...在预训练过程中,深度学习模型通过学习数据中的特征和模式来调整其参数,使其能够更好地拟合数据。...当您进行某一个算法改进的对比实验时,可以选择不使用预训练权重,这样可以更加公平地评估不同改进算法的性能。...当然,要根据具体任务来决定应该冻结哪些层,以获得最好的训练效果。 九、冻结训练和权重之间有什么关系? 模型冻结训练和权重之间是有关系的。...微调是指在模型冻结训练的基础上,对部分或全部权重和偏置进行微小调整,以适应新的任务或数据集。通过微调,我们可以让预训练模型更好地适应我们的任务或数据集,提高模型的性能。
迁移学习(Transfer Learning)作为深度学习中的一种重要技术,已经广泛应用于各种视觉任务,如图像分类、目标检测等。...使用VGG进行迁移学习有以下几个优势: 预训练权重:VGG已经在大规模数据集(如ImageNet)上训练,学习到了丰富的视觉特征,如边缘、纹理和形状等。...3.4 冻结层数(Number of Frozen Layers) 在迁移学习中,冻结不同层的参数会影响训练速度和模型的泛化能力: 冻结更多层:冻结更多的卷积层可以加速训练,避免过拟合,尤其在数据集较小的情况下...冻结层数:如果数据集较小且任务与ImageNet差异较大,可以尝试解冻更多的卷积层以学习更多的新特征。 迁移学习在深度学习中是一种非常强大的技术,特别是在特征提取任务上。...希望本文能够帮助你深入理解如何在VGG上进行迁移学习并进行超参数调节,从而提升你的模型性能。
本文将详细介绍LoRA的原理、应用场景、优点以及如何在实际项目中使用LoRA进行模型微调。一、LoRA简介1.1 什么是LoRA?...易于集成:由于 LoRA 不需要修改原始模型的架构,因此它可以很容易地集成到现有的深度学习框架中,如 TensorFlow 和 PyTorch。...2.3 参数共享在多任务学习中,LoRA 可以用于不同任务之间的参数共享。通过对共享的权重矩阵应用低秩更新,不同任务可以在不相互干扰的情况下进行学习,从而提高模型的通用性和性能。...三、LoRA 的实现与代码示例接下来,我们将介绍如何在实际项目中使用 LoRA 进行模型微调。我们将使用 PyTorch 框架来实现一个简单的示例。...4.2 在计算机视觉中的应用在计算机视觉任务中,如图像分类和物体检测,LoRA 也表现出了较好的效果。通过在卷积神经网络中引入低秩更新,LoRA 能够在减少训练时间的同时,保持较高的模型准确率。
但是,我们是否可以在不使用如此昂贵且细粒度的标注数据的情况下获得类似的特征表达能力呢?本文研究了使用噪声标注(在这种情况下为图像标题)的弱监督预训练。...尽管视频的多模表征学习多有发展,然而不使用其他任何类似于文本与语音的模态信息,但使用视频流进行自监督学习还未有所发展。...有趣的是,最近的研究表明,不使用元学习的标准转移学习,其中特征提取器首先在基类上进行了预训练,然后根据新的几个类别上在预训练的提取器之上对分类器进行了微调。,其性能和更复杂的元学习策略不相上下。...在这种情况下,需要使用低延迟算法来确保安全运行。但是,即使经常研究计算机视觉算法的延迟,也仅主要在离线环境中进行了研究。在线视觉感知会带来完全不同的延迟需求。...首先,通过使用深度视差的前向形变操作将给定的左输入图像转换为合成的右图像。然后,利用视差图像对,以有监督的方式对视差估计网络进行训练,得到一个泛化的模型。
FFCV 库:一个计算机视觉加速数据加载系统,用于增加模型训练中的数据吞吐量。...只需更换数据加载器,然后…… 本篇文章选择了 10 篇论文,这些论文展示了各种 AI 子领域的关键发展:自动强化学习 (AutoRL)、多模态语言模型 (LM)、计算机视觉 (CV) 中的ConvNets...他们在zero-shot 设置中的单峰和多峰任务上对 CM3 进行了基准测试,显示出在图像字幕、图像生成、摘要、实体链接和其他几个 NLP 任务上的可靠(在某些情况下甚至是 SOTA)性能。...包括这些知识将需要使用新数据来训练模型以进行微调或从头开始,这是非常昂贵的。...这些模型可以在没有监督的情况下进行训练吗? 这是 OpenAI 提出的以完全自监督的方式学习文本的文本表示的提议。这些表示(即嵌入)旨在成为包括信息检索在内的各种任务中的可靠执行者。
在现代机器学习框架中,像TensorFlow,公开可用的数据集和预先训练的图像识别模型,可以在不应用过多的工作和花费过多的时间和资源的情况下,以相当好的准确性解决问题。...斯坦福的犬种数据集有20K图像,包含120个品种的狗。数据集里的每一个图像都标注了狗的品种。你可能已经注意到了,只有20K张的120个不同品种的图像(每品种200个图像)不足以训练一个深度神经网络。...卷积神经网络(CNN)是图像分类中最好的机器学习模型,但在这种情况下,没有足够的训练实例来训练它。它将无法从这个数据集上学习到足够通用的模式来对不同的犬种进行分类。...src/inference/classify.py脚本可以将存储在文件系统上或者可用的狗的图像归类为HTTP资源。在幕后,它加载冻结图形并将图像输入其中。...(如TensorFlow),也可以训练一个强大的图像分类器。
像Tensorflow和PyTorch这样的现代深度学习框架使向机器学习图像变得容易,但是,仍然存在一些问题:数据如何通过神经网络的人工层传递?计算机如何从中学习?...训练完模型后,我们要求网络根据测试数据进行预测。如果您不熟悉神经网络,那么这篇有关使用Python进行深度学习的文章就是一个很好的起点。 另一方面,CNN是一种特殊的神经网络,在图像上表现特别出色。...通过允许网络的不同部分专门处理高级功能(如纹理或重复图案),可以最大程度地减少参数数量。感到困惑?别担心。让我们比较一下图像如何通过多层感知器和卷积神经网络进行传递的,以更好地理解。...与人类通过用眼睛了解图像的计算机不同,计算机使用一组介于0到255之间的像素值来了解图片。计算机查看这些像素值并理解它们。乍一看,它不知道物体或颜色,只识别像素值,这就是图像用于计算机的全部。...就像孩子一样,计算机需要经历了解图像的学习过程。值得庆幸的是,这不需要几年的时间!计算机通过从头开始学习,然后逐步进行到整体来完成此任务。
例如,本文在 ImageNet 上使用 32 个 A100 GPU 在 38 小时内训练了 ViT-Huge/16,以在需要不同抽象级别的各种任务(从线性分类到目标计数和深度预测)中实现强大的下游性能。...因此,需要更复杂的适应机制(例如,端到端微调)来充分利用这些方法的优势。 本文工作 在这项工作中,探索了如何在 不使用通过图像变换编码的额外先验知识的情况下 提高自监督表示的语义水平。...通过广泛的实证评估,本文证明: I-JEPA 在 不使用手工的视图增强 的情况下 学习强大的现成的语义表示(参见下图)。...然后,条件变量 z 对应于一组(可能是可学习的)掩码和位置tokens,它向解码器指定要重建哪些图像块。只要 z 的信息容量比信号 y 低,这些架构就不会担心表示崩溃。...与联合嵌入架构相比,JEPA 不寻求对一组手工制作的数据增强不变的表示,而是寻求在以附加信息 z 为条件时 相互预测的表示。然而,与联合嵌入架构一样,表示崩溃也是 JEPA 的一个问题。
这种方法的好处是,预训练的前几层已经学会了图像中低级别的特征,因此我们不需要从头开始学习这些特征。微调通常涉及以下几个步骤:冻结部分层:冻结模型的前几层,只训练后面的全连接层。...迁移学习的应用迁移学习已经在多个领域取得了巨大的成功。以下是一些迁移学习的典型应用场景:1. 计算机视觉计算机视觉任务通常需要大量的标注数据来训练深度学习模型。...通过迁移学习,研究人员和开发者可以使用在大规模数据集上训练的预训练模型(如ResNet、VGG、Inception等),然后对其进行微调,应用于特定的计算机视觉任务,如人脸识别、目标检测、医学影像分析等...实践:使用迁移学习进行图像分类下面是一个简单的示例,展示如何使用迁移学习进行图像分类任务。...冻结预训练模型的前几层,并只训练最后几层。训练模型,进行微调。评估模型表现。
3.1 图像加载与显示 加载和显示图像是计算机视觉的第一步。我们将演示如何使用OpenCV加载图像,并在屏幕上显示它们,同时探讨不同图像格式的使用。...3.2 色彩空间转换 色彩空间的转换在图像处理中是常见的任务。我们将解释不同的色彩空间模型,如RGB、灰度和HSV,并演示如何在它们之间进行转换。...深度学习与图像分割 深度学习已经在计算机视觉领域取得了巨大成功。在本章节中,我们将探索深度学习与图像分割相关的概念和方法。...8.2 构建CNN模型进行标志识别 卷积神经网络在图像分类中表现出色。我们将展示如何使用深度学习框架构建CNN模型,并演示如何训练模型以实现交通标志识别。...总结与展望 在这一章节中,我们将对全文进行总结,并展望计算机视觉和机器学习领域的未来发展趋势。我们将强调学习的重要性,并鼓励读者继续深入学习和实践,以应对不断变化的技术挑战。
计算机视觉中目标检测的传统方法是识别图像中的物体。通过结合文本描述,作者提高了这个过程,提供了更好的上下文和准确性。MDETR模型通过将图像和文本数据结合,实现了更灵活的目标检测和分类。...作者的方法涉及冻结MDETR Backbone 并训练一个单独的组件,即深度融合编码器(DFE),以表示图像和文本模态。一个可学习的上下文向量使DFE可以切换到这些模态。...为了降低训练开支并保持 MDETR 性能,作者提出了一种简洁的方法,该方法冻结预训练的 ResNet 和 RoBERTa 模型,并专注于训练一个负责表示图像和文本模式单一组件。...lightweight MDETR 解决了高训练成本的问题,通过冻结如ResNet和RoBERTa等预训练特征提取模型,并引入了作者开发的单一、轻量级组件"深度融合编码器"(DFE)。...为了允许DFE使用与ResNet和RoBERTa相同的参数对来自不同模型的输入,例如图像和文本,引入了可学习的上下文向量(其中图像,文本),并与嵌入进行融合。
前言 卷积神经网络(Convolutional Neural Network,CNN)是一种在计算机视觉领域取得了巨大成功的深度学习模型。...在过去几年中,CNN已经在图像识别、目标检测、图像生成和许多其他领域取得了显著的进展,成为了计算机视觉和深度学习研究的重要组成部分。...简而言之,卷积操作就是用一个可移动的小窗口来提取图像中的特征,这个小窗口包含了一组特定的权重,通过与图像的不同位置进行卷积操作,网络能够学习并捕捉到不同特征的信息。...如果不使用填充,卷积核的中心将无法对齐到输入图像的边缘,导致输出特征图尺寸变小。假设我们使用步幅(stride)为1进行卷积,那么在不使用填充的情况下,输出特征图的尺寸将是2x2。...图像通常由三个颜色通道(红、绿、蓝)组成,形成一个二维矩阵,表示像素的强度值。 2. 卷积和激活 卷积层将输入图像与卷积核进行卷积操作。然后,通过应用激活函数(如ReLU)来引入非线性。
卷积神经网络(Convolutional Neural Network,CNN)是一种在计算机视觉领域取得了巨大成功的深度学习模型。它们的设计灵感来自于生物学中的视觉系统,旨在模拟人类视觉处理的方式。...在过去的几年中,CNN已经在图像识别、目标检测、图像生成和许多其他领域取得了显著的进展,成为了计算机视觉和深度学习研究的重要组成部分。...简而言之,卷积操作就是用一个可移动的小窗口来提取图像中的特征,这个小窗口包含了一组特定的权重,通过与图像的不同位置进行卷积操作,网络能够学习并捕捉到不同特征的信息。...如果不使用填充,卷积核的中心将无法对齐到输入图像的边缘,导致输出特征图尺寸变小。假设我们使用步幅(stride)为 1 进行卷积,那么在不使用填充的情况下,输出特征图的尺寸将是 2x2。...图像通常由三个颜色通道(红、绿、蓝)组成,形成一个二维矩阵,表示像素的强度值。 2 卷积和激活 卷积层将输入图像与卷积核进行卷积操作。然后,通过应用激活函数(如ReLU)来引入非线性。
请记住,在本章中讨论的大多数技术都是机器学习和深度学习通用的,一部分用于解决过拟合问题的技术(如dropout)除外。...计算机可以在比赛中击败人类的这种技术上的进展,曾被认为需要花费数十年时间才能实现。然而,使用深度学习和强化学习却可以这么快就达到目标,比任何人所预见的都要快。...因此,在这些情况下,应该注意通过在分割或进行分层抽样之前对数据进行混洗来实现数据的良好混合。分层抽样是指从每个类别中提取数据点来创建验证和测试数据集。 2.时间敏感性 让我们以股价预测为例。...对于任何机器学习算法或深度学习算法,算法自动提取这种类别的特征都是相当具有挑战性的。对于某些领域,特别是在计算机视觉和文本领域,现代深度学习算法有助于我们摆脱特征工程。...有一些技术,如数据增强,可用于在计算机视觉相关的问题中生成更多的训练数据。数据增强是一种让用户通过执行不同的操作,如旋转、裁剪和生成更多数据,来轻微调整图像的技术。
此外,在缺乏标注的情况下,AutoSAM和CNN预测Head也比从Head开始训练和自监督学习方法具有更好的分割精度。...考虑到这些限制,本文提出了一种在医学图像数据集上微调SAM的直接方法,即冻结SAM编码器的权重,并在其上添加预测Head进行训练。冻结权重的原因是SAM是一个大模型,并且大多数权重由编码器贡献。...然后,通过2个转置的conv层对图像嵌入进行放大,并选择前景Mask Token 与放大的嵌入进行逐点乘积以获得Mask。...在微调过程中,UNet的编码器用预先训练的权重进行初始化,并且模型中的所有参数都在标记数据上进行训练。最后,作者在没有任何微调的情况下尝试原始SAM,以解决将SAM自定义到特定数据集的必要性。...2、Ablation Study 作者进行的第一项消融研究是关于CNN预测Head中的深度数量如何影响微调结果。在表2中, Dice 随着深度的增加而增加,直到 Depth=4为止。
领取专属 10元无门槛券
手把手带您无忧上云