首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在一个图形中绘制多个seasonal_decompose图?

在一个图形中绘制多个seasonal_decompose图,可以通过以下步骤实现:

  1. 导入必要的库和数据:首先,导入Python中的相关库,如pandasstatsmodelsmatplotlib。然后,准备需要进行季节分解的时间序列数据。
  2. 进行季节分解:使用statsmodels库中的seasonal_decompose函数对时间序列数据进行季节分解。该函数可以根据不同的分解模型(如加法模型或乘法模型)进行分解,并返回分解后的趋势、季节和残差等组成部分。
  3. 绘制图形:使用matplotlib库中的绘图函数,将分解后的趋势、季节和残差等组成部分绘制在同一个图形中。可以使用不同的颜色或线型来区分不同的组成部分。

以下是一个示例代码,展示了如何在一个图形中绘制多个seasonal_decompose图:

代码语言:python
代码运行次数:0
复制
import pandas as pd
from statsmodels.tsa.seasonal import seasonal_decompose
import matplotlib.pyplot as plt

# 准备时间序列数据
data = pd.read_csv('data.csv', parse_dates=['date'], index_col='date')

# 定义绘制函数
def plot_seasonal_decompose(data, title):
    # 进行季节分解
    decomposition = seasonal_decompose(data, model='additive')
    
    # 绘制图形
    plt.figure(figsize=(12, 8))
    plt.subplot(411)
    plt.plot(data, label='Original')
    plt.legend(loc='best')
    plt.subplot(412)
    plt.plot(decomposition.trend, label='Trend')
    plt.legend(loc='best')
    plt.subplot(413)
    plt.plot(decomposition.seasonal,label='Seasonality')
    plt.legend(loc='best')
    plt.subplot(414)
    plt.plot(decomposition.resid, label='Residuals')
    plt.legend(loc='best')
    plt.suptitle(title, fontsize=16)
    plt.show()

# 绘制多个seasonal_decompose图
plot_seasonal_decompose(data['column1'], 'Seasonal Decompose - Column 1')
plot_seasonal_decompose(data['column2'], 'Seasonal Decompose - Column 2')

在上述示例代码中,首先导入了必要的库和数据。然后定义了一个绘制函数plot_seasonal_decompose,该函数接受时间序列数据和标题作为参数,利用seasonal_decompose函数进行季节分解,并使用matplotlib库绘制四个子图,分别表示原始数据、趋势、季节和残差。最后,调用plot_seasonal_decompose函数分别绘制多个seasonal_decompose图。

请注意,示例代码中的数据文件data.csv需要根据实际情况进行替换,同时还可以根据需要调整图形的大小、颜色和线型等参数。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【MATLAB】基本绘图 ( 绘制多图 | 设置图形对话框在 Windows 界面的位置和大小 | 在一个图形上绘制多个小图形 )

3文章目录 一、绘制多图 1、绘制多图 2、代码示例 二、设置图形对话框在 Windows 界面的位置和大小 三、在一个图形上绘制多个小图形 一、绘制多图 ---- 1、绘制多图 存在一种绘图情况 ,...需要同时展示两条曲线 , 但是二者的 x 或 y 轴差距过大 , 需要绘制在两个图中 ; 在绘制每个图前 , 先调用一次 figure , 就会在新的对话框中生成一张新的图形 ; 使用示例如下 :...% 绘制第一个图像 , 平方函数 figure, plot(x, y1); % 绘制第二个图像 , 指数函授 figure , plot(x, y2) 注意事项 : 分成两个图形绘制时 , 需要注意...; bottom 参数 : 图形对话框在 Windows 界面中 , 距离屏幕底部的距离 ; width 参数 : 图形对话框宽度 ; height 参数 : 图形对话框高度 ; 代码示例 : %...三、在一个图形上绘制多个小图形 ---- 使用 subplot 可以指定内部的小图形 ; subplot(m, n, 1); m 参数 : 行数 ; n 参数与 : 列数 ; 第三个参数是 1 ~

7K70
  • 如何在一个Docker中同时运行多个程序进程?

    我们都知道Docker容器的哲学是一个Docker容器只运行一个进程,但是有时候我们就是需要在一个Docker容器中运行多个进程 那么基本思路是在Dockerfile 的CMD 或者 ENTRYPOINT...运行一个”东西”,然后再让这个”东西”运行多个其他进程 简单说来是用Bash Shell脚本或者三方进程守护 (Monit,Skaware S6,Supervisor),其他没讲到的三方进程守护工具同理...Bash Shell脚本 入口文件运行一个Bash Shell 脚本, 然后在这个脚本内去拉起多个进程 注意最后要增加一个死循环不要让这个脚本退出,否则拉起的进程也退出了 run.sh #!...Linux容器初始化系统 dumb-init是一个简单的进程监控器和init系统,设计为在最小容器环境(如Docker)中作为PID 1运行。...它被部署为一个用C编写的小型静态链接二进制文件。

    16.2K30

    高效工作流:用Mermaid绘制你的专属流程图;如何在Vue3中导入mermaid绘制流程图

    mermaid 高效工作流:用Mermaid绘制你的专属流程图 一、流程图的使用场景 1.1、流程图flowChart 流程图是对某一个问题的定义、分析或解法的图形表示,图中用各种符号来表示操作...使用图形表示算法的思路是一种极好的方法,因为千言万语不如一张图。通常用于计算机科学、业务流程设计、工程等领域。...电灯修理思路流程图 1.2、使用场景 流程图使用场景非常广泛,如软件开发、项目管理、工作流程、科学研究、制造和生产等。...onMounted(() => { mermaid.initialize({ startOnLoad: true }); mermaid.init(); }); 四、mermaid绘制流程图的优缺点...而且柔滑的贝塞尔曲线看起来非常不专业(从来没在论文里面见过弯曲连线的流程图) 五、总结 mermaid是一款非常优秀的基于 JavaScript 的图表绘制工具,可渲染 Markdown

    15010

    AI办公自动化-kimi批量在多个Excel工作表中绘制柱状图

    工作任务和目标:批量在多个Excel工作表中生成一个柱状图 第一步,在kimi中输入如下提示词: 你是一个Python编程专家,完成下面任务的Python脚本: 打开文件夹:F:\aivideo 读取里面所有的...xlsx文件; 打开xlsx文件,创建一个空的柱状图对象; 为柱状图指定数据源:工作表中第二列的数据。...folder_path, filename) # 加载xlsx文件 workbook = load_workbook(filename=file_path) print("已加载文件:", file_path) # 创建一个空的柱状图对象...bar_chart = BarChart() print("创建了空的柱状图对象") # 为柱状图指定数据源:工作表中第二列的数据 # 假设第一个工作表是我们要操作的 sheet = workbook.active...第三步,打开visual studio code软件,新建一个py文件,将Python代码复制到这个文件中,按下F5键运行程序: 程序运行结果:

    31710

    数据分析与可视化:解析销售趋势

    我们将通过一个实际的案例研究,演示如何使用数据分析工具来解析销售趋势,从而为业务决策提供有力的支持。 介绍 数据分析已经成为了当今商业世界中不可或缺的一部分。...在我们的案例中,我们将使用一个虚拟的销售数据集,其中包含了销售日期、产品信息、销售数量和销售金额等字段。...当进行数据分析时,还有许多其他重要的概念和技术需要考虑,以下是一些可以添加到文章中的内容: 数据可视化 解释数据可视化的重要性:数据可视化是将数据转化为图形或图表的过程,有助于更直观地理解数据分布和趋势...引入常用的数据可视化库如Matplotlib、Seaborn和Plotly,并演示如何使用它们创建各种类型的图表,如柱状图、折线图、散点图等。..., model='additive') # 绘制分解图 result.plot() plt.show() 结果解释 强调数据分析的最终目标是为业务决策提供有力支持,因此需要清晰地解释结果。

    40740

    创美时间序列【Python 可视化之道】

    然后,我们使用Seaborn的lineplot函数绘制了股票价格的时间序列图表。示例:绘制气温时间序列图如何使用Python可视化库创建气温时间序列图表。...自相关图可以帮助我们识别时间序列数据中的自相关性,即当前值与之前某个时间点的值之间的相关性。...可以使用plot_acf函数绘制自相关图,并根据自相关性的强度来判断时间序列是否具有趋势或周期性。...最后,我们绘制了预测结果,展示了未来一段时间内的股票价格趋势。除了Prophet之外,还可以尝试使用其他时间序列预测模型,如ARIMA、LSTM等,根据数据的特点和需求选择合适的模型进行建模和预测。...接着,我们讨论了一些常见的时间序列数据分析技术,包括季节性分解、移动平均线和自相关图,并提供了在Python中实现这些技术的示例代码。

    18710

    时间序列预测:探索性数据分析和特征工程的实用指南

    2013年前后有一个异常值,可以进行特殊的分析 季节性 季节性图基本上是一个时间图,其中数据是根据它们所属的系列的各个“季节”绘制的。...这张图还告诉我们,在多年的总消费量中,并没有明显的增加/减少模式。 2、周消耗量 另一个有用的图表是每周图表,它描述了几个月来每周的消费情况,还可以表明每周在一年内是否以及如何变化。...另一个有用的图是一周内的分布,这类似于每周消费季节性图。...最后我们来看小时图。它类似于日消费季节性图,因为它提供了一天中消费的分布情况。...我们描述了一些最常用的时间序列EDA分析,这些分析可以是统计/数学和图形。这项工作的目的只是提供一个实用的框架来开始,后续的调查需要根据所检查的历史系列的类型和业务背景进行。

    21510

    Pandas 高级教程——高级时间序列分析

    在本篇博客中,我们将深入介绍 Pandas 中的高级时间序列分析技术,并通过实例演示如何应用这些功能。 1. 安装 Pandas 确保你已经安装了 Pandas。...创建示例数据 在学习高级时间序列分析之前,首先创建一个示例的时间序列数据: # 创建示例数据 date_rng = pd.date_range(start='2022-01-01', end='2022...季节性分解 from statsmodels.tsa.seasonal import seasonal_decompose # 季节性分解 result = seasonal_decompose(time_series_data...自相关和偏自相关 10.1 自相关图 from statsmodels.graphics.tsaplots import plot_acf # 绘制自相关图 plot_acf(time_series_data...['value'], lags=30) plt.show() 10.2 偏自相关图 from statsmodels.graphics.tsaplots import plot_pacf # 绘制偏自相关图

    34910

    7.如何在RedHat7的OpenLDAP中实现将一个用户添加到多个组

    温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。...RedHat7上安装OpenLDA并配置客户端》、《2.如何在RedHat7中实现OpenLDAP集成SSH登录并使用sssd同步用户》、《3.如何RedHat7上实现OpenLDAP的主主同步》、《4...本篇文章主要介绍如何在RedHat7的OpenLDAP中将一个用户添加到多个组中。...4.添加测试用户及用户组 ---- 这里我们添加一个测试用户faysontest2,将faysontest2用户添加到faysontest2和faysontest3组中。...如果需要用户拥有多个组,只需要在需要加入组的条目下增加一条记录memberUid: faysontest2,faysontest2即为你用户的uid。 一个组条目下支持多个memberUid属性。

    2.9K60

    用Python进行时间序列分解和预测

    如何在Python中绘制时间序列数据? 时间序列的要素是什么? 如何分解时间序列? 经典分解法 如何获得季节性调整值?...Python中的加权移动平均(WMA) Python中的指数移动平均(EMA) 什么是时间序列? 顾名思义,时间序列是按照固定时间间隔记录的数据集。换句话说,以时间为索引的一组数据是一个时间序列。...在开始预测未来值的详细工作之前,与将要使用你的预测结果的人谈一谈也不失为一个好主意。 如何在PYTHON中绘制时间序列数据?...在下面的示例中,我们使用set_index()将date列转换为索引。这样就会自动在x轴上显示时间。接下来,我们使用rcParams设置图形大小,最后使用plot()函数绘制图表。...每季度的旅客总数 这幅图非常有趣,它清晰地表明,在1949-1960年之间的所有年份中,航空旅客人数每季度都在显著增加。 时间序列的要素是什么? 时间序列数据包含4个主要元素: 1.

    3.8K20

    这种两个Colorbar的图形怎么绘制?这样做真的超简单...

    前言 一、「绘图技巧」 :如何在同一个图形上显示两个colorbar 二、可视化学习圈子是干什么的? 三、系统学习可视化 四、猜你喜欢 前言 我们的数据可视化课程已经上线啦!!...「绘图技巧」 :如何在同一个图形上显示两个colorbar 今天我们的学员交流群里有人咨询: 如何在一个图形中同时显示两个Colorbar?特别是在绘制地图的时候。...添加 在Matplotlib中,绘制两个甚至多个colorbar的核心技巧可以总结为以下两点: 绘制colorbar位置部分 使用fig.colorbar()函数映射正确的数值和绘图对象 绘制colorbar...位置部分 这一个操作一般都是使用Matplotlib中画布对象fig的*add_axes()*, 该函数的主要作用是Matplotlib中用于在图形(Figure)上添加新的坐标轴(Axes)的方法之一...这种环形图太难画?!带你一行代码搞定.. 不是,这封面图这么多人问的吗?教程来了 不用Seaborn,这个工具也能绘制超炫的统计图形··· NetworkX,网络结构图最强绘制工具·····

    31610

    【Java AWT 图形界面编程】Canvas 中绘制超大图片 ( 使用鼠标拖动查看全图 | 设置 JFrame 窗口自动关闭 | 获取并绘制图片 | 鼠标拖动计算位移 | 画布偏移 )

    一、Canvas 中绘制超大图片要点 ---- 1、设置 JFrame 窗口自动关闭 创建 JFrame 窗口后 , 通过调用 JFrame#setDefaultCloseOperation 可以设置窗口自动关闭...image = Toolkit.getDefaultToolkit().getImage("image.jpg"); 调用 Graphics#drawImage 函数 , 向 Canvas 中绘制图片...; // 绘制图形 graphics.drawImage(image, 0, 0, this); 绘图的函数原型为 : ImageObserver 就是 Canvas...; 计算一个 Canvas 的画布偏移量 ( offsetX , offsetY ) , 该偏移量持续累加 , 多次鼠标拖动也会累加到一起 ; // 添加鼠标动作监听 addMouseMotionListener...// 获取图片 Image image = Toolkit.getDefaultToolkit().getImage("image.jpg"); // 绘制图形

    1.4K20

    Python时间序列分析苹果股票数据:分解、平稳性检验、滤波器、滑动窗口平滑、移动平均、可视化

    apple_price_history.loc['2018-6-1'] 使用日期时间访问器 dt访问器具有多个日期时间属性和方法,可以应用于系列的日期时间元素上,这些元素在Series API文档中可以找到...折线图 sns.lineplot 绘制标准折线图。它的工作方式类似于我们上面使用的dataframe.plot。...苹果公司的销售在第四季度达到峰值就是亚马逊收入中的一个季节性模式的例子。 周期性 周期性指的是在不规则时间间隔内观察到的明显重复模式,如商业周期。...,就像之前所做的那样;将图形分成多个部分,查看均值、方差和相关性等摘要统计数据;或者使用更高级的方法,如增广迪基-富勒检验(Augmented Dickey-Fuller test)。...函数返回一个带有季节性、趋势和残差属性的对象,我们可以从系列值中减去它们。

    67400
    领券