首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【LLM训练系列01】Qlora如何加载、训练、合并大模型

参数说明: model: 一个从 transformers 加载的预训练模型对象(如 GPT、BERT)。...输出: 经过此函数处理后的模型: 更适合在量化或低精度(FP16/BF16)环境下训练。 非量化模型的关键参数被转换为 FP32,以提升稳定性。 冻结大部分参数,只保留需要训练的部分。...这意味着,合并权重的过程需要加载原始的基础模型,并将微调的适配器参数与之结合,生成一个新的模型权重文件。...训练:需要prepare_model_for_kbit_training(model) 合并:加载基础模型进行合并qlora 推理:加载base模型然后加载qlora权重也可以加载合并之后的 模型为基础模型...训练:加载需要使用bnb对基础模型量化 合并:加载基础模型进行合并qlora 推理:加载base模型然后加载qlora权重也可以加载合并之后的

22810
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    OpenVINO部署加速Keras训练生成的模型

    基本思路 大家好,今天给大家分享一下如何把Keras框架训练生成模型部署到OpenVINO平台上实现推理加速。...要把Keras框架训练生成的h5模型部署到OpenVINO上,有两条技术路线: 选择一: 把预训练权重文件h5转换pb文件,然后再转为OpenVINO可以解析的IR文件 选择二: 把预训练权重文件h5转为...然后我从github上找了个Keras全卷积语义分割网络的源码库,下载了预训练模型,通过下面的几行代码完成了从h5权重模型文件到ONNX格式文件的转换 # Load model and weights...(model, model.name) keras2onnx.save_model(onnx_model, "D:/my_seg.onnx") 运行上面的代码就会生成ONNX格式的模型文件,ONNX格式转换成功...这里唯一需要注意的是,Keras转换为ONNX格式模型的输入数据格式是NHWC而不是OpenVINO预训练库中模型的常见的输入格式NCHW。运行结果如下 ?

    3.2K10

    使用Java部署训练好的Keras深度学习模型

    我一直在探索深度学习的一个用例是使用Python训练Keras模型,然后使用Java产生模型。...它提供了Java深度学习的功能,可以加载和利用Keras训练的模型。我们还将使用Dataflow进行批预测,使用Jetty进行实时预测。...使用DL4J进行Keras预测 现在我们已经设置了库,我们可以开始使用Keras模型进行预测。我编写了下面的脚本来检验加载Keras模型并对样本数据集进行预测。第一步是从h5文件加载模型。...它实现了Jetty的AbstractHandler接口以提供模型结果。以下代码展示了如何将Jetty服务设置为在端口8080上运行,并实例化JettyDL4J类,该类在构造函数中加载Keras模型。...在转换器中,你可以定义诸如Keras模型之类的对象,这些对象在转换器中定义的每个流程元素步骤被共享。结果是模型为每个转换器加载一次,而不是为每个需要预测的记录加载一次。

    5.3K40

    Tensorflow加载预训练模型的特殊操作

    在前面的文章【Tensorflow加载预训练模型和保存模型】中介绍了如何保存训练好的模型,已经将预训练好的模型参数加载到当前网络。这些属于常规操作,即预训练的模型与当前网络结构的命名完全一致。...本文介绍一些不常规的操作: 如何只加载部分参数? 如何从两个模型中加载不同部分参数? 当预训练的模型的命名与当前定义的网络中的参数命名不一致时该怎么办?...如果从头训练显然没有finetune收敛速度快,但是模型又没法全部加载。此时,只需将未修改部分参数加载到当前网络即可。...如果需要从两个不同的预训练模型中加载不同部分参数,例如,网络中的前半部分用一个预训练模型参数,后半部分用另一个预训练模型中的参数,示例代码如下: import tensorflow as tf def...举个例子,例如,预训练的模型所有的参数有个前缀name_1,现在定义的网络结构中的参数以name_2作为前缀。

    2.3K271

    keras系列︱深度学习五款常用的已训练模型

    笔者先学的caffe,从使用来看,keras比caffe简单超级多,非常好用,特别是重新训练一个模型,但是呢,在fine-tuning的时候,遇到了很多问题,对新手比较棘手。...中文文档:http://keras-cn.readthedocs.io/en/latest/ 官方文档:https://keras.io/ 文档主要是以keras2.0 一、Application的五款已训练模型...+ H5py简述 Kera的应用模块Application提供了带有预训练权重的Keras模型,这些模型可以用来进行预测、特征提取和finetune。...例如,如果你设置data_format=”channel_last”,则加载的模型将按照TensorFlow的维度顺序来构造,即“Width-Height-Depth”的顺序。.... 2、Sequential模型如何部分layer载入权重 ---- 下面,我们将预训练好的权重载入模型,一般而言我们可以通过model.load_weights()载入,但这种办法是载入全部的权重,并不适用

    8K70

    keras系列︱深度学习五款常用的已训练模型

    笔者先学的caffe,从使用来看,keras比caffe简单超级多,非常好用,特别是重新训练一个模型,但是呢,在fine-tuning的时候,遇到了很多问题,对新手比较棘手。  ...中文文档:http://keras-cn.readthedocs.io/en/latest/ 官方文档:https://keras.io/ 文档主要是以keras2.0  一、Application的五款已训练模型...+ H5py简述  Kera的应用模块Application提供了带有预训练权重的Keras模型,这些模型可以用来进行预测、特征提取和finetune。...例如,如果你设置data_format=”channel_last”,则加载的模型将按照TensorFlow的维度顺序来构造,即“Width-Height-Depth”的顺序。  ....  2、Sequential模型如何部分layer载入权重  下面,我们将预训练好的权重载入模型,一般而言我们可以通过model.load_weights()载入,但这种办法是载入全部的权重,并不适用

    1.5K10

    yolov7-keras源码,可以用于训练自己的模型

    向AI转型的程序员都关注了这个号 YOLOV7目标检测模型在keras当中的实现 支持step、cos学习率下降法、支持adam、sgd优化器选择、支持学习率根据batch_size自适应调整、新增图片裁剪...《美团机器学习实践》_美团算法团队.pdf 《深度学习入门:基于Python的理论与实现》高清中文PDF+源码 《深度学习:基于Keras的Python实践》PDF和代码 特征提取与图像处理(第二版...(二) :文本数据的展开、过滤和分块 特征工程(三):特征缩放,从词袋到 TF-IDF 特征工程(四): 类别特征 特征工程(五): PCA 降维 特征工程(六): 非线性特征提取和模型堆叠...特征工程(七):图像特征提取和深度学习 如何利用全新的决策树集成级联结构gcForest做特征工程并打分?...Machine Learning Yearning 中文翻译稿 蚂蚁金服2018秋招-算法工程师(共四面)通过 全球AI挑战-场景分类的比赛源码(多模型融合) 斯坦福CS230官方指南:CNN、RNN

    1.3K10

    FFCV:让数据加载不再是训练模型的瓶颈

    前段时间逛GitHub看到FFCV这个库,该库主要是优化数据加载过程来提升整体训练速度。...一方面自己是搞框架的,数据加载优化是其中一部分重头戏;另一方面是PyTorch的数据加载速度也被诟病很久,毕竟面对的是研究人员,大部分人都是直接opencv, PIL一把梭哈数据预处理,我也很好奇如果好好写这部分能对...PyTorch的速度提升多少,遂写这篇文章想分析分析(如有分析不对的地方还望指正)。...其构造主要分为以下几个大块: - libffcv 自己写的一套C扩展 - ffcv python库主体 |- fields 数据结构 |- loader 数据加载器 |- memory_manager...总结 FFCV这个库还是挺不错的,不需要很多HPC知识,不需要你会写算子,通过比较成熟的一些工具来实现数据加载的加速,兼顾了PyTorch DataLoader的灵活性,同时又有较高的性能。

    1.1K40

    【问题解决】解决如何在 CPU 上加载多 GPU 训练的模型

    前言 有一期的恶意文件检测模型训练好了,因此需要进行测试,关于恶意文件检测的内容,可以回看博主之前写的博文: 【AI】浅析恶意文件静态检测及部分问题解决思路 【AI】恶意文件静态检测模型检验及小结 因为样本在某台机子上...,又恰逢有其他模型在训练,因此 GPU 资源被占满了,不过测试这个模型的话,CPU 也绰绰有余了,当我准备使用 CPU 训练时,却遇到了问题; 分析 1、model.to(device) 不会影响 torch.load...就是说找不到参数,因此,我将字典部分内容打印了一下: for k, v in state_dict.items(): print(k, v) break 发现问题了,在多 GPU 上训练的模型....` state_dict_new[name] = v model.load_state_dict(state_dict_new) 这样就能够在 CPU 上加载多 GPU 训练的模型了...后记 以上就是 【问题解决】解决如何在 CPU 上加载多 GPU 训练的模型 的全部内容了,希望对大家有所帮助!

    60751

    深度学习如何训练出好的模型

    其中正样本和负样本比例,建议为1:2或1:3,这是因为现实世界中负样本比正样本更多,但也要根据自己模型的场景来判断,如何过多的负样本,模型会偏向于识别负样本,而无法识别出正样本了。...场景如果暴露在开阔的地方,就应该要考虑到光照的影响, 就需要对数据进行颜色上的增强。 同时,在使用数据增强方法时,需要注意避免对数据进行过度增强,否则会对模型的性能产生负面影响。...训练中的技巧 因为训练深度学习模型,成本更高,不可能使用多钟超参数组合,来训练模型,找出其中最优的模型,那如何成本低的情况下训练出好的模型呢 在成本低的情况下,可以采用以下方法训练出好的模型: 提前停止...:在训练模型时,我们可以跟踪验证集的性能,并在性能不再提高时停止训练。...使用预训练模型:预训练模型是在大型数据集上训练的模型,可以作为初始模型来加速训练过程,并提高模型性能。 迁移学习:迁移学习是指将预训练模型应用于新的任务,然后微调以适应新任务。

    69621

    Keras 模型中使用预训练的 gensim 词向量和可视化

    Keras 模型中使用预训练的词向量 Word2vec,为一群用来产生词嵌入的相关模型。这些模型为浅而双层的神经网络,用来训练以重新建构语言学之词文本。...https://zh.wikipedia.org/wiki/Word2vec 在这篇 [在Keras模型中使用预训练的词向量](https://keras-cn.readthedocs.io/en/latest.../blog/ word_embedding/) 讲述了如何利用预先训练好的 GloVe 模型,本文基本大同小异。...只写一些不同的地方,更想的可以看这篇文章。 总体思路就是给 Embedding 层提供一个 [ word_token : word_vector] 的词典来初始化向量,并且标记为不可训练。...模型 Tensorflow 提供了超级棒的可视化工具 TensorBoard,详细的介绍请看 - TensorBoard: Visualizing Learning Keras 模型记录训练进度到 Tensorboard

    1.4K30

    2021年如何科学的“微调”预训练模型?

    当然也有少数土豪朋友们在不断训练出新的“预训练“模型,帮助苍生,提高SOTA。 那么如何科学的“微调”“预训练模型”自然而然便成为了一个重要的研究课题/方向/必备知识啦。...所以“微调”也像字面意思一样,对模型参数“微微”调整。 如果是随机初始化并从头开始训练网络则!=“微调”。 因此常规的“微调”通常也使用更小的learning rate对模型进行训练。...如何微调预训练模型 A 目标任务相同 B 目标任务不相同 1 无监督+大规模数据预训练 yes yes 2 无监督+domain数据预训练 yes yes 3 有监督+相似任务预训练 yes no 4...本文暂时不包含微调预训练的另外2个话题:1、微调模型的稳定性;2、如何高效进行微调?...结语 以上便是今天想写的内容啦,总结一下就是:什么是“微调”, 什么是“预训练”,如何“微调”预训练。 看着table是不是觉得可能性更多啦?

    1.9K31

    如何兼容自训练与预训练:更高效的半监督文本分类模型

    香侬科技研究了如何更有效地结合半监督自训练和预训练,即如何在大规模通用领域预训练的前提下,更好地利用大规模领域内无标注语料与标注语料,从而最大限度地提升模型效果。 ?...如何利用?是像BERT一样预训练,还是用伪标签的自训练方法? 在不同的和条件下,不同的训练方式会有怎样的结果差异?...但无论如何,不管以怎样的方式去预训练自训练,我们都能取得显著更好的文本分类效果,尤其是在小样本的条件下,如在IMDB数据集上,通过有效结合预训练和自训练,仅使用50个标注样本就可以达到93.8%的准确率...不同的预训练/自训练模型 首先,我们将介绍不同的模型训练策略,以研究它们在不同条件下的表现。记是领域内的标注数据,是数据集大小。是领域内的无标注数据,大小为。下面考虑如何利用数据集。...同领域内预训练,Student模型可以是随机初始化的,也可以是已经预训练的。 现在要考虑的问题是:(1)如何构建;(2)如何用和训练Student模型。

    1K20

    如何优化知识图谱嵌入模型的训练效率

    知识图谱嵌入模型的训练通常涉及到大量的参数和复杂的计算,尤其是在面对海量实体和关系时。因此,优化训练效率不仅能够缩短模型的训练时间,还能提高模型的整体性能。...本文将详细探讨如何优化知识图谱嵌入模型的训练效率,结合实例分析和代码部署过程,展示具体的优化策略。 知识图谱嵌入的基本原理 1 知识图谱的构成 知识图谱由节点(实体)和边(关系)组成。...优化训练效率的方法 优化知识图谱嵌入模型的训练效率可以从多个方面进行改进: 数据预处理与优化 数据清洗:去除冗余和噪声数据,以减小数据集的规模。...分层模型:使用分层模型架构,首先训练低层模型,然后再训练高层模型。 方法 描述 参数共享 在不同的关系间共享嵌入层的参数。...分层模型 先训练简单的模型,再逐步复杂化。

    15810

    PyTorch系列 | 如何加快你的模型训练速度呢?

    如何获取更多 cuda 设备的信息?...在 GPU 上存储 Tensors 和运行模型的方法 有多个 GPU 的时候,如何选择和使用它们 数据并行 数据并行的比较 torch.multiprocessing 本文的代码是用 Jupyter notebook...如何获取更多 cuda 设备的信息? 获取基本的设备信息,采用 torch.cuda 即可,但如果想得到更详细的信息,需要采用 pycuda 。...在多模型中,每个 GPU 应用单独一个模型,并且各自有预处理操作都完成好的一份数据拷贝; 每个 GPU 采用切片输入和模型的拷贝,每个 GPU 将单独计算结果,并将结果都发送到同一个 GPU 上进行进一步的运算操作...下面展示一个采用多进程训练模型的例子: # Training a model using multiple processes: import torch.multiprocessing as mp def

    4.1K30

    如何极大效率地提高你训练模型的速度?

    以Python为例,教你如何使用迁移学习 我现在在Unbox Research工作,由 Tyler Neylon创办的新的机器学习研究单位,岗位是机器学习工程师。...图2:转移学习神经网络模型的模型架构,红色表示固定的权重和偏差,绿色表示仅训练最终层的权重和偏差。 在转学习中,我们从整个网络的预训练权重开始。...示例代码 让我们看看一些Python代码,以获得更多的思考(但不要太远 - 不想迷失在那里)。 首先,我们需要从预训练模型开始。 Keras有一堆预训练模型; 我们将使用InceptionV3模型。...# Keras and TensorFlow must be (pip) installed. from keras.applications import InceptionV3 from keras.models...下面,我们加载预训练模型; 然后,我们使用TensorFlow方法 .get_layer() 从原始模型中获取输入和倒数第二个(瓶颈)图层名称,并使用这两个层作为输入和输出构建新模型。

    2.2K50
    领券