回答:可以的。接着问:请问怎么做。没有回答了。本文就是彻底回答。 大部分人根本不理解透视表 从现实经验来看,很多人只是在用透视表,实际情况是几乎 99% 的人根本不知道到底什么是透视表。...因为,这并不是一个简单的问题,如果你打开微软Excel来观察这个描述,它是这样写的: 这里仅仅是透视表具有的功能,却并没说清楚什么是透视表。当然,我们也不在这里纠结于概念。...PowerBI 的图表是如何被展示的 很多初学者都会好奇一个问题,那就是:PowerBI 图表背后是什么?并且经常犯一个认知错误,那就是:把创建好的一个度量值拖拽到图表的轴上,并发现无法成功。...如果无法默认存在规律,我们就需要单独考虑标题列,标题行,值,汇总的分别计算模式: 但总的来所,行列交叉处进行度量值计算。将 矩阵 叫做 交叉表 未尝不可,因为从字面意思可以看出行列交叉处产生运算。...构造计算,本例中,使用 DAX 动态完成在行列交叉处的计算: 这是最核心的步骤,这里采用Excel120此前提出的非侵入式设计模式,动态计算出行列交叉处的值。以示例文件为准。
在Python中使用SQLite对数据库表进行透视查询可以通过以下步骤实现。假设我们有一份水果价格数据的表,并希望对其进行透视,以查看每个产品在每个超市中的价格,下面就是通过代码实现的原理解析。...1、问题背景我需要对一个数据库表进行透视查询,将具有相同ID的行汇总到一行输出中。例如,给定一个水果价格表,其中包含了不同超市中不同水果的价格,我希望得到一个汇总表,显示每个水果在每个超市中的价格。...库pandas库是一个强大的数据分析库,它提供了透视查询的功能。...我们可以使用以下代码来实现透视查询:import pandas as pd# 将数据加载到pandas DataFrame中df = pd.DataFrame(data, columns=['Fruit...(0))# 创建一个透视查询结果字典pivot_table = {}# 遍历分组后的数据for fruit, group in groups: # 创建一个字典来存储每个水果的价格 prices
数据统计描述与列联表分析是数据分析人员需要掌握的基础核心技能,R语言与Python作为优秀的数据分析工具,在数值型数据的描述,类别型变量的交叉分析方面,提供了诸多备选方法。...Python: 关于Python中的变量与数据描述函数,因为之前已经介绍过一些基础的聚合函数,这里仅就我使用最多的数据透视表和交叉表进行讲解:Pandas中的数据透视表【pivot_table】和交叉表...pandas的交叉表函数pd.crosstab参数设定规则与透视表保持了很高的相似度,确实从呈现形式上来讲,数值型变量的尽管聚合方式有很多【均值、求和、最大值、最小值、众数、中位数、方差、标准差、求和等...以上透视表是针对数值型变量的分组聚合,那么针对类别型变量则需要使用pandas中的交叉表函数进行列表分析。...事实上,crosstab似乎同时也能兼容透视表的完整功能,但是奇怪的是透视表提供了数据框名称参数,指定参数时无需声明数据框名称,而且行列字段都可指定列表对象(二维以上,指定多个 字段),但是交叉表则没有给出数据框名称向量
join concat:合并多个dataframe,类似sql中的union pivot:按照指定的行列重塑表格 pivot_table:数据透视表,类似excel中的透视表 cut:将一组数据分割成离散的区间...,适合将数值进行分类 qcut:和cut作用一样,不过它是将数值等间距分割 crosstab:创建交叉表,用于计算两个或多个因子之间的频率 join:通过索引合并两个dataframe stack: 将数据框的列...“堆叠”为一个层次化的Series unstack: 将层次化的Series转换回数据框形式 append: 将一行或多行数据追加到数据框的末尾 分组 聚合 转换 过滤 groupby:按照指定的列或多个列对数据进行分组...: 替换字符串中的特定字符 astype: 将一列的数据类型转换为指定类型 sort_values: 对数据框按照指定列进行排序 rename: 对列或行进行重命名 drop: 删除指定的列或行 数据可视化...、趋势和季节性 pandas.plotting.parallel_coordinates:绘制平行坐标图,用于展示具有多个特征的数据集中各个样本之间的关系 pandas.plotting.scatter_matrix
我们可以用分组平均值去填充NA值: 也可以在代码中预定义各组的填充值。由于分组具有一个name属性,所以我们可以拿来用一下: 四、数据透视表与交叉表 4.1....数据透视表 pivot()的用途就是,将一个dataframe的记录数据整合成表格(类似Excel中的数据透视表功能),pivot_table函数可以产生类似于excel数据透视表的结果,相当的直观。..., margins=False, dropna=True) 参数说明: data =原始数据,要应用透视表的数据框; index=用于分组的列名或其他分组键,出现在结果透视表的行; columns...为True时,行/列小计和总计的名称; 【例17】对于DataFrame格式的某公司销售数据workdata.csv,存储在本地的数据的形式如下,请利用Python的数据透视表分析计算每个地区的销售总额和利润总额...程序代码如下所示: 4.2.交叉表 交叉表采用crosstab函数,可是说是透视表的一部分,是参数aggfunc=count情况下的透视表。
以下是合并步骤: 新建一个汇总表(可以在本工作薄新建也可以在新建的工作薄建立) 插入——数据透视表向导(一个需要自己添加的菜单,如果在菜单中找不到就到自定义功能区中去添加) 以上步骤也可以通过快捷键完成...在弹出的数据透视表向导中选择多重合并计算数据区域,点击下一步。 选择创建自定义字段,继续点击下一步。 ? 在第三步的菜单中选定区域位置用鼠标分别选中四个表的数据区域(包含标题字段)。...此时软件会生成一个默认的透视表样式,需要我们自己对透视表结构、字段做细微调整。 ? 将页字段名重命名为地区,将行标签命名为类别(双击或者在左上角名称框中命名) ?...合并步骤: 与工作薄内的表间合并差不多,首先插入——数据透视表向导(快捷键:Alt+d,p) 选择多重合并计算字段——创建自定义字段。 ? 将两个工作薄中的四张表全部添加到选定区域。 ? ?...然后在选定的每一个表的下面设定页字段数目: 由于数据来源于不同工作薄的不同表,所以页字段数据全部设置为2,字段1和字段2分别命名为对应表的工作薄和工作表名称。 ?
1.交叉分析 用于分析两个或两个以上,分组变量之间的联系,以交叉表形式进行变量间关系的对比分析。...:数据透视表中的值 index:数据透视表中的行 columns:数据透视表中的列 aggfunc:统计函数 fill_value:NA值的统一替换 import numpy import pandas...,计算各组成部分所占的比重,进而分析总体的内部特征的分析方法。...pandas中进行占比计算,使用groupby计算出分组结果,或pivot_table计算出交叉表的结果之后,如果 还需要继续运算,可使用数据框自带函数计算。...数据框的外运算函数,用于两个数据框之间的运算 运算 注释 add 加 sub 减 multiply 乘 div 除 数据框的内运算函数,用于数据框自身的运算 运算 注释 sum 求和 mean 均值
请思考: 1 透视表是什么?会用Excel做透视表吗? 2 pandas如何做透视表分析?使用什么函数?函数的参数如何选择和设置? 1 透视表介绍 数据透视表是一个用来总结和展示数据的强大工具。...pandas提供了pivot_table()函数以快捷地把DataFrame转换为透视表。...3 数据透视表分析 简单的透视表,指定DataFrame里面需要透视的一个index,以Name为index做透视表。...请思考:透视表默认的计算逻辑和展示方式是什么? 在数据框中选择多个index做透视表。...5 总结 pandas通过pivot_table()函数可以实现透视表,通过设置函数里面的不同参数以达成不同的目标。
透视表pivot_table是各种电子表格和其他数据分析软件中一种常见的数据分析汇总工具。...根据一个或者多个键对数据进行聚合 根据行和列上的分组键将数据分配到各个矩形区域中 一文看懂pandas的透视表 Pivot_table 特点 灵活性高,可以随意定制你的分析计算要求 脉络清晰易于理解数据...操作性强,报表神器 参数 data: a DataFrame object,要应用透视表的数据框 values: a column or a list of columns to aggregate,...关于pivot_table函数结果的说明: df是需要进行透视表的数据框 values是生成的透视表中的数据 index是透视表的层次化索引,多个属性使用列表的形式 columns是生成透视表的列属性...Crosstab 一种用于计算分组频率的特殊透视表。
所以我们今天来分享下,如何基于薪酬的数据分析表来自动的生成薪酬的数据汇总表,自动的进行薪酬关键指标的计算。...首先我们来看下薪酬的数据汇总表示什么样的(看下图),在这个表里我们需要计算各个层级的最大值,最小值和中位值,那如何的来生成这些指标数据呢?...我们选择了用数据透视表的方式来进行,在数据透视表中的“行” 选择姓名,“值”选择实际薪酬 ,具体如下 在这个表中我们需要注意的是,应发工资我们选择了月度薪酬的平均值,年度薪酬这一列=应发工资 *...在这个高层的数据透视表上我们写函数,提取各个指标的数据 MAX MIN PERCENTILE 通过这些函数就可以计算出我们在做薪酬曲线和薪酬带宽曲线中需要的数据,在下面的各个层级计算中,只需要复制第一张透视表...这样通过数据透视表和公式就可以快速的进行薪酬数据汇总表的生成,薪酬数据汇总表主要是输出薪酬的曲线图和薪酬的带宽曲线图,来进行薪酬外部数据的对标和内部结构的调整,所以这个是薪酬数据分析的基础。
; (3)直方图分组数据具有连续性,所以直方图的各矩形通常是连续排列的,而条形图表示分类数据,则是分开排列; 描述分析 描述分析与频率分析的不同之处在于: (1)描述分析提供的统计量仅适用于连续变量,频率分析既可用于分析连续变量...交叉表分析 交叉表示一种行列交叉的分类汇总表格,行和列上至少各有一个分类变量,行和列的交叉处可以对数据进行多种汇总计算,如求和、平均值、计数等。...它的原理是从数据的不同角度综合进行分组细分,以进一步了解数据的构成、分布特征,它是描述分析常用方法之一。类似于EXcel的数据透视表。...频率分析、描述分析都是对单个变量进行分析,交叉表可以对多个变量在不同取值情况下的数据分布情况进行分析。从而进一步分析变量之间的相互影响和关系。...叠加表示意图 (2)交叉表 它是一种行列交叉的分类汇总表格,行和列上至少各有一个分类变量,行和列的交叉处可以对数据进行多种汇总计算,如计数、百分比、求和、平均值等。 ?
(1)单击数据列表区域中任一单元格,在【插入】选项卡中单击数据透视表图标,弹出【创建数据透视表】对话框,如图: image.png (2)【创建数据透视表】对话框默认选项不变,点击【确定】后,就会生成一个新的...sheet页面并创建了一张空的数据透视表。...这三个字段同时也被添加到数据透视表中,如图: image.png 数据透视表的结构,就是当把不同的字段拖到行、列标签,数据透视表也会按照不同的维度来进行呈现。...通过以上的数据透视表,我们汇总了销售阶段与赢单率交叉表的金额合计值。 从表中可以快速地看到不同的销售阶段里各赢单率下的金额合计结果。...在弹出的【创建数据透视表】对话框中,这次数据透视表的位置,我并没有用默认的“新工作表”,因为我想要把这个透视表放在刚才问题1创建的透视表里。
第4、5两天掌握了Pandas这个库的基本用法。 第6天学习了数据的合并堆叠。 第7天开始学习数据清洗,着手学会了重复值删除、异常值处理、替换、创建哑变量等技能。...数据透视表 (1)pivot_table()方法 (2)交叉表crosstab ---- 统计师的Python日记【第10天:数据聚合】 前言 根据我的Python学习计划: Numpy → Pandas...这是一个典型的数据聚合的例子,现在如果想用Pandas来实现,应该如何处理? 1. 聚合运算 (1)groupby:按照变量进行分组 要实现这个目的,使用 groupby 语句即可。...数据透视表 在第5天的日记中,提到过“数据透视表”(第5天:Pandas,露两手): ?...(2)交叉表crosstab 因为是统计师,经常会做卡方检验,所以对列联表或者是交叉表很熟悉,就是看交叉分组下的频数。
前言 Excel与Python都是数据分析中常用的工具,本文将使用动态图(Excel)+代码(Python)的方式来演示这两种工具是如何实现数据的读取、生成、计算、修改、统计、抽样、查找、可视化、存储等数据处理中的常用操作...Pandas 在Pandas中没有一个固定修改格式的方法,不同的数据格式有着不同的修改方法,比如类似Excel中将创建时间修改为年-月-日可以使用df['创建时间'] = df['创建时间'].dt.strftime...数据透视表 说明:制作数据透视表 Excel 数据透视表是一个非常强大的工具,在Excel中有现成的工具,只需要选中数据—>点击插入—>数据透视表即可生成,并且支持字段的拖取实现不同的透视表,非常方便,...Pandas 在Pandas中制作数据透视表可以使用pivot_table函数,例如制作地址、学历、薪资的透视表pd.pivot_table(df,index=["地址","学历"],values=["...结束语 以上就是使用Pandas来演示如何实现Excel中的常用操作的全部过程,其实可以发现Excel的优点就是大多由交互式的点击完成数据处理,而Pandas则完全依赖于代码,对于有些操作比如数据透视表
数据透视表将每一列数据作为输入,输出将数据不断细分成多个维度累计信息的二维数据表。...在实际数据处理过程中,数据透视表使用频率相对较高,今天云朵君就和大家一起学习pandas数据透视表与逆透视的使用方法。...数据基本情况 groupby数据透视表 使用 pandas.DataFrame.groupby 函数,其原理如下图所示。...使用车辆数据集统计不同性别司机的平均年龄,聚合后用二维切片可以输出DataFrame数据框。...crosstab 是交叉表,是一种特殊的数据透视表默认是计算分组频率的特殊透视表(默认的聚合函数是统计行列组合出现的次数)。
Excel图表类型 为了揭示数据规律 为了有说服力、促进沟通 专业的图表可以展示专业素养 了解有哪些图表类型 柱状图 折线图 饼图 面积图 雷达图 Excel图表使用 图表的创建方式 图表的数据源一般是统计汇总表或者是数据量比较少的明细表...根据数据源的不同,基础图表创建的方法有2种: 1.利用固定数据区域创建图表,即根据工作表中某个固定的数据区域创建图表 2.利用固定常量创建图表,即创建图表的数据为固定的常量数据 利用固定数据区域创建图表...如下图所示,选中不同的透视表,在右边可以看到透视表的明细。 •自定义建立透视表 自定义建立透视表的方法是,单击【插入】选项卡下【数据透视表】按钮,出现如下图所示的对话框。...理解字段 创建透视表后,Excel面板分为三个区域,左边是透视表显示区,右上方是字段列表区,右下方是字段设置区 字段布局步骤 : 勾选需要的字段 => 设置字段 =>(筛选,计算方式) => 查看透视表是否符合需求...最终效果 分析不同业务员不同商品的销量 分析不同业务员,不同商品类别的销售额 添加数据透视图 添加透视图的方法:选中透视表区域的单元格,在【数据透视表分析】选项卡下【工具】组中选择【数据透视图】 数据透视图内容筛选
数据长宽转换是很常用的需求,特别是当是从Excel中导入的汇总表时,常常需要转换成一维表(长数据)才能提供给图表函数或者模型使用。...而相对于数据宽转长而言,数据长转宽就显得不是很常用,因为长转宽是数据透视,这种透视过程可以通过汇总函数或者类数据透视表函数来完成。 但是既然数据长宽转换是成对的需求,自然有对应的长转宽函数。...spread: spread( data=data1, #带转换长数据框名称 key=Year, #带扩宽的类别变量(编程新增列名称) value=Sale) #带扩宽的度量值...还在Python中提供了非常便捷的数据透视表操作函数,刚开始就已经说过是,长数据转宽数据就是数据透视的过程(自然宽转长就可以被称为逆透视咯,PowerBI也是这么称呼的)。...pandas中的数据透视表函数提供如同Excel原生透视表一样的使用体验,即行标签、列标签、度量值等操作,根据使用规则,行列主要操作维度指标,值主要操作度量指标。
在 Pandas 中,您使用特殊方法从/向 Excel 文件读取和写入。 让我们首先基于上面示例中的数据框,创建一个新的 Excel 文件。 tips.to_excel("....数据操作 1. 列操作 在电子表格中,公式通常在单个单元格中创建,然后拖入其他单元格以计算其他列的公式。在 Pandas 中,您可以直接对整列进行操作。...pandas DataFrames 有一个 merge() 方法,它提供了类似的功能。数据不必提前排序,不同的连接类型是通过 how 关键字完成的。...数据透视表 电子表格中的数据透视表可以通过重塑和数据透视表在 Pandas 中复制。再次使用提示数据集,让我们根据聚会的规模和服务器的性别找到平均小费。...在 Excel 中,我们对数据透视表使用以下配置: 等效的Pandas代码。
唯一有些区别的是XY坐标不再是固定的31省市,而是按照不同省份筛选出来的省内各地市坐标;此外,将本省内之外的所有交叉销量统称为省外。...步骤二:准备相应素材 2.1准备原始数据表:将原始数据用数据透视表处理成如下格式 ---- ---- ---- 注: 1)行字段是经销商所在城市,列字段是客户所在城市; 2)行和列均有总计,目的是后期计算省外的交叉销售数值...最终实现通过宏按钮从省到市的下钻效果。 2)因为这里需要计算省外的数值,但在生成省市射线图和气泡图的时候,不同的省份,“省外”位置是不固定的。...J4,城市交叉!A1: 这样便可以计算出下表中,省外的倾入倾出数值,并将其显示在下表中。 3)在切换省份后,城市清单表有更新,故需更新其透视表以及其切片器。...Sheets("各省射线图").PivotTables("数据透视表1").PivotCache.Refresh ActiveWorkbook.SlicerCaches("切片器_城市").PivotTables
引言:本文为《Python for Excel》中第5章Chapter 5:Data Analysis with pandas的部分内容,主要讲解了pandas如何对数据进行描述性统计,并讲解了将数据聚合到子集的两种方法...为此,首先按洲对行进行分组,然后应用mean方法,该方法将计算每组的均值,自动排除所有非数字列: 如果包含多个列,则生成的数据框架将具有层次索引,即我们前面遇到的多重索引: 可以使用pandas提供的大多数描述性统计信息...它们引入了第二个维度,可以从不同的角度查看数据。pandas还有一个数据透视表功能,将在下面介绍。...透视表和熔解 如果在Excel中使用透视表,应用pandas的pivot_table函数不会有问题,因为它的工作方式基本相同。...下面的数据框架中的数据的组织方式与数据库中记录的典型存储方式类似,每行显示特定地区指定水果的销售交易: 要创建数据透视表,将数据框架作为第一个参数提供给pivot_table函数。
领取专属 10元无门槛券
手把手带您无忧上云