用多个文件建立 DataFrame ~ 按列 上个技巧按行合并数据集,但是如果多个文件包含不同的列,该怎么办? 本例将 drinks 数据集分为了两个 CSV 文件,每个文件都包含 3 列。 ?...把 Series 里的列表转换为 DataFrame 创建一个 DataFrame 示例。 ? 这里包含了两列,第二列包含的是 Python 整数列表。...这个结果集显示的数据很多,但不一定都是你需要的,可能只需要其中几行。 ? 还可以只选择部分列。 ? 21....年龄列有 1 位小数,票价列有 4 位小数,如何将这两列显示的小数位数标准化? 用以下代码让这两列只显示 2 位小数。 ? 第一个参数是要设置的选项名称,第二个参数是 Python 的字符串格式。...创建样式字符字典,指定每列使用的格式。 ? 把这个字典传递给 DataFrame 的 style.format() 方法。 ? 注意:日期是月-日-年的格式,闭市价有美元符,交易量有千分号。
这是pandas最基础的开篇知识点使用可迭代对象构造DataFrame,列表的每个元素都是整个DataFrame对应的一行,而这个元素内部迭代出来的每个元素将构成DataFrame的某一列。...列表分列的2种方法 列表分列的思路:Pandas的Series对象调用apply方法单个元素返回的结果是Series时,这个Series的每个数据会作为Datafrem的每一列,索引会作为列名。...直接对Datafream进行列表分列 如果我们希望直接使用Datafream实现分列可以借助agg方法,因为agg方法是对每一列的Series对象操作: df.agg({"a": lambda x: x...将字典的键作为索引的2种读取方法 当然上面我只是为了给大家讲述分列的一些方法。...然后使用melt方法进行逆透视: df.melt(id_vars='a', value_name='b') 结果: ? 然后删除第二列,再删除空值行,再将数值列转换为整数类型就搞定。
这对我们原始dataframe的影响有限,这是由于它只包含很少的整型列。 同理,我们再对浮点型列进行相应处理: 我们可以看到所有的浮点型列都从float64转换为float32,内存用量减少50%。...余下的大部分优化将针对object类型进行。 在这之前,我们先来研究下与数值型相比,pandas如何存储字符串。...Pandas用一个字典来构建这些整型数据到原数据的映射关系。当一列只包含有限种值时,这种设计是很不错的。...我们从上表中可以看到,它只包含了7个唯一值。我们用.astype()方法将其转换为类别类型。 可以看到,虽然列的类型改变了,但数据看上去好像没什么变化。我们来看看底层发生了什么。...总结 我们学习了pandas如何存储不同的数据类型,并利用学到的知识将我们的pandas dataframe的内存用量降低了近90%,仅仅只用了一点简单的技巧: 将数值型列降级到更高效的类型 将字符串列转换为类别类型
describe方法默认只给出数值型变量的常用统计量,要想对DataFrame中的每个变量进行汇总统计,可以将其中的参数include设为all。...它既支持替换全部或者某一行,也支持替换指定的某个或指定的多个数值(用字典的形式),还可以使用正则表达式替换。...df.rename(columns={'mark': 'sell'}, inplace=True) 输出: 行列转置,我们可以使用T属性获得转置后的DataFrame。...melt()方法可以将宽表转长表,即表格型数据转为树形数据。...如果想直接筛选包含特定字符的字符串,可以使用contains()这个方法。 例如,筛选户籍地址列中包含“黑龙江”这个字符的所有行。
这次我将分享三个实际案例,让大家看看列表分列的一些实际应用。...首先,我们先导包并设置Pandas显示参数: import pandas as pd pd.set_option("display.max_colwidth", 100) 正则提取并分列 需求: ?...作为一个Series就可以通过将每个列表元素转换为Series,从而最终返回一个分列的Datafream: _.apply(pd.Series) 结果: ?...解析json字符串并字典分列 需求: ? 首先读取数据: df = pd.read_excel("字典分列.xlsx") df.head() 结果: ?...**.apply(pd.Series)则可以将每个字典对象转换成Series,则可以将该字典扩展到多列,并将原始的Series转换为Datafream。
) 与Series不同的是,DataFrame包括索引index和表头columns: 其中data可以是很多类型: 包含列表、字典或者Series的字典 二维数组 一个Series对象 另一个DataFrame...列中的日期转换为没有时分秒的日期 df.to_excel("dates.xlsx") 向pandas中插入数据 如果想忽略行索引插入,又不想缺失数据与添加NaN值,建议使用 df['column_name...在我们使用append合并时,可能会弹出这个错误,这个问题就是pandas版本问题,高版本的pandas将append换成了-append results = results.append(temp,..._append(temp, ignore_index=True) pandas数据转置 与矩阵相同,在 Pandas 中,我们可以使用 .transpose() 方法或 .T 属性来转置 我们的DataFrame...通常情况下, 因为.T的简便性, 更常使用.T属性来进行转置 注意 转置不会影响原来的数据,所以如果想保存转置后的数据,请将值赋给一个变量再保存。
pandas 和第三方库扩展了 NumPy 的类型系统的几个地方。本节描述了 pandas 在内部所做的扩展。请参阅扩展类型了解如何编写自己的扩展以与 pandas 一起使用。...astype()将一部分列转换为指定类型。...astype()和loc()将一部分列转换为指定类型时,会发生向上转型。...astype()将一部分列转换为指定类型。...astype()和loc()将一部分列转换为指定类型时,会发生向上转换。
pandas 官方文档地址:https://pandas.pydata.org/ 在 Python 中,使用 pandas 库通过列表字典(即列表里的每个元素是一个字典)创建 DataFrame 时,如果每个字典的...当通过列表字典来创建 DataFrame 时,每个字典通常代表一行数据,字典的键(key)对应列名,而值(value)对应该行该列下的数据。如果每个字典中键的顺序不同,pandas 将如何处理呢?...下面举一个简单示例: # 导入 pandas 库 import pandas as pd import numpy as np # 创建包含不同 key 顺序和个别字典缺少某些键的列表字典 data...df = pd.DataFrame(data, dtype=np.float64):这行代码使用 pandas 的 DataFrame 函数将 data 列表转换为 DataFrame。...总的来说,这段代码首先导入了所需的库,然后创建了一个包含多个字典的列表,最后将这个列表转换为 DataFrame,并输出查看。
本文将介绍如何使用Python进行数据分类汇总与统计,帮助读者更好地理解和应用数据。 首先,我们需要导入一些常用的Python库,如pandas、numpy和matplotlib等。...假设我们有一个包含学生信息的CSV文件,我们可以使用以下代码将其加载到DataFrame中: df = pd.read_csv('student_data.csv') 在加载数据后,我们可以使用pandas...关键技术:对于由DataFrame产生的GroupBy对象,如果用一个(单个字符串)或一组(字符串数组)列名对其进行索引,就能实现选取部分列进行聚合的目的。...使用函数分组 比起使用字典或Series,使用Python函数是一种更原生的方法定义分组映射。 【例6】以上一小节的DataFrame为例,使用len函数计算一个字符串的长度,并用其进行分组。...程序代码如下所示: people.groupby(len).sum() 将函数跟数组、列表、字典、Series混合使用也不是问题,因为任何东西在内部都会被转换为数组 key_list = ['one',
写入到 Excel:使用 pandas 库将提取的数据保存到 Excel 文件。...data_list.append({"Name": name, "Age": age, "City": city})# 将列表转换为 Pandas DataFramedf = pd.DataFrame...{excel_file}")注1:如果JSON格式不严谨,例如包含过多的换行符,空格等,导致按行读取解析报错,我们还需要再将JSON数据转为Excel之前,首先将JSON格式转换为紧凑格式,也就是我们前面提高的样例数据格式...Excel 文件到 Pandas DataFramedf = pd.read_excel(excel_file)# 将 DataFrame 转换为 JSON 格式并保存到文件df.to_json(json_file...的 DataFrame 中。
而对于多变量时间序列,则可以使用带有多列的二维 Pandas DataFrame。然而,对于带有概率预测的时间序列,在每个周期都有多个值的情况下,情况又如何呢?...数据框转换 继续学习如何将宽表格式数据框转换为darts数据结构。...Darts--转换为 Numpy 数组 Darts 可以让你使用 .all_values 输出数组中的所有值。缺点是会丢弃时间索引。 # 将所有序列导出为包含所有序列值的 numpy 数组。...Gluonts数据集是Python字典格式的时间序列列表。可以将长式Pandas数据框转换为Gluonts。...将图(3)中的宽格式商店销售额转换一下。数据帧中的每一列都是带有时间索引的 Pandas 序列,并且每个 Pandas 序列将被转换为 Pandas 字典格式。
Pandas不会自动将第一列作为索引,不指定时会自动使用以0开始的自然索引。...如果只使用数据的部分列,可以用usecols来指定,这样可以加快加载速度并降低内存消耗。...]) 08 返回序列 将squeeze设置为True,如果文件只包含一列,则返回一个Series,如果有多列,则还是返回DataFrame。...将指定的文本内容转换为True或False,可以用列表指定多个值。...]}) 如果infer_datetime_format被设定为True并且parse_dates可用,那么Pandas将尝试转换为日期类型。
本文将介绍如何使用Python进行数据分类汇总与统计,帮助读者更好地理解和应用数据。 首先,我们需要导入一些常用的Python库,如pandas、numpy和matplotlib等。...假设我们有一个包含学生信息的CSV文件,我们可以使用以下代码将其加载到DataFrame中: df = pd.read_csv('student_data.csv') 在加载数据后,我们可以使用pandas...程序代码如下所示: people.groupby(len).sum() 将函数跟数组、列表、字典、Series混合使用也不是问题,因为任何东西在内部都会被转换为数组 key_list = ['one',...下面是一个示例,展示了如何使用pandas的crosstab函数计算交叉频率表: import pandas as pd # 创建示例数据 data = { 'Gender': ['Male'...它可以改变时间序列数据的频率,将数据从高频率转换为低频率(如从天到月),或者将数据从低频率转换为高频率(如从月到天)。重采样可以帮助我们对数据进行更好的分析和可视化。
继续开发和维护,属于PyData项目的一部分。...创建DataFrame有多种方式: 以字典的字典或Series的字典的结构构建DataFrame,这时候的最外面字典对应的是DataFrame的列,内嵌的字典及Series则是其中每个值。...只是思路略有不同,一个是以列为单位构建,将所有记录的不同属性转化为多个Series,行标签冗余,另一个是以行为单位构建,将每条记录转化为一个字典,列标签冗余。...DataFrame转换为其他类型 df.to_dict(outtype='dict') outtype的参数为‘dict’、‘list’、‘series’和‘records’。...与此等价,还可以用起始的索引名称和结束索引名称选取数据: df['a':'b'] 有一点需要注意的是使用起始索引名称和结束索引名称时,也会包含结束索引的数据。
大家好,又见面了,我是你们的朋友全栈君。 本文介绍两种在python里创建数组的方法。第一种是通过字典直接创建,第二种是通过转换列表得到数组。...方法1.字典创建 (1)导入功能 (2)创立字典 (3)将字典带上索引转换为数组 代码示例如下: import numpy as np import pandas as pd data={“name...他将返回“num-4”(第三为num)个等间距的样本,在区间[start-1, stop-4]中 方法2:列表转换成数组 (1)导入功能,创建各个列表并加入元素 (2)将列表转换为数组 (3)把各个数组合并...(4)可视需要转置数组 代码示例如下: import pandas as pd import numpy as np list1=[‘name’,‘sex’,‘school’,‘Chinese’...(list1) df2=pd.DataFrame(list2) df3=pd.DataFrame(list3) df4=pd.DataFrame(list4) data=pd.concat([df1
一、如何使用列表创建⼀个DataFrame # 导入pandas库 import pandas as pd # 创建一个列表,其中包含数据 data = [['A', 1], ['B', 2], ['...C', 3]] # 使用pandas的DataFrame()函数将列表转换为DataFrame df = pd.DataFrame(data, columns=['Letter', 'Number']...3 二、如何使用Series 字典对象生成 DataFrame # 导入pandas库 import pandas as pd # 创建一个字典对象 data = {'Name': ['Tom', '...Nick', 'John'], 'Age': [20, 21, 19]} # 使用pandas的DataFrame()函数将字典转换为DataFrame df = pd.DataFrame(data)...的合并操作 如何将新⾏追加到pandas DataFrame?
本文将从基础概念出发,逐步深入探讨如何使用 Pandas 对列名和索引进行重命名,并介绍一些常见问题、报错及解决方案。...使用 rename() 方法重命名部分列名# 只修改部分列名df.rename(columns={'Col1': 'Column1', 'Col2': 'Column2'}, inplace=True)...print("\n修改后的 DataFrame (使用 rename 方法):")print(df)输出:修改后的 DataFrame (使用 rename 方法): Column1 Column2...数据类型不匹配有时,列名或索引可能包含特殊字符或空格,这可能导致后续操作出现问题。...本文介绍了几种常见的重命名方法,并讨论了一些常见问题及其解决方案。希望这些内容能够帮助你在实际工作中更好地使用 Pandas 进行数据处理。
本文将介绍创建Pandas DataFrame的6种方法。...2、手工创建Pandas DataFrame 接下来让我们看看如何使用pd.DataFrame手工创建一个Pandas数据帧: df = pd.DataFrame(data=['Apple','Banana...4、使用字典创建Pandas DataFrame 字典就是一组键/值对: dict = {key1 : value1, key2 : value2, key3 : value3} 当我们将上述字典对象转换为...5、将Excel文件转换为Pandas DataFrame 如果你有一个excel文件,例如“fruits.xlsx“… ?...6、将CSV文件转换为Pandas DataFrame 假设你有一个CSV文件,例如“fruits.csv“,可以使用如下的代码 将其转换为DataFrame: fruits = pd.read_csv
# 3.是抽出一部分数据来,人工直观地理解数据的意义,尽可能地发现一些问题 DataDF.head() ?...#pandas.DataFrame.loc loc这个代码有点像Excel里面的鼠标左键,可以随意拉动你需要的数据进行切片。...值 2)在pandas中,将缺失值表示为NA,表示不可用not available。...3)对于数值数据,pandas使用浮点值NaN(Not a Number)表示缺失数据。...: DataFrame.fillna https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html
领取专属 10元无门槛券
手把手带您无忧上云