是不是感觉被封面图和不明觉厉的题目给骗进来了哈哈哈,今天这篇是理论篇,没有多少案例,而且还很长,所以静不下心的小伙伴儿可以先收藏着,时间充裕了再看。 ---- 当今互联网和大数据发展的如此迅猛,大量的运营与业务数据需要通过可视化呈现来给商业分析人员提供有价值的决策信息,而地理信息与空间数据可视化则是可视化分析中至关重要而且门槛较高的一类。 通常除了少数本身具备强大前端开发能力的大厂之外,很多中小型企业在内部预算资源有限的情况下,并不具备自建BI和完整可视化框架的能力。需要借助第三方提供的开源可视化平台或者
geopandas是建立在GEOS、GDAL、PROJ等开源地理空间计算相关框架之上的,类似pandas语法风格的空间数据分析Python库。
在计算机图形学中,多边形裁剪是一个常用的技术,用于确定多边形与给定裁剪窗口之间的交集。通过裁剪,我们可以剔除不在裁剪窗口范围内的部分,从而减少图形处理的计算量,并加速渲染过程。 Python提供了各种库和算法来实现多边形裁剪。在本篇文章中,我们将使用shapely库来进行多边形的裁剪操作。shapely是一个Python库,提供了一些用于处理几何图形数据的功能。
geopandas是建立在GEOS、GDAL、PROJ等开源地理空间计算相关框架之上的,类似pandas语法风格的空间数据分析Python库,其目标是尽可能地简化Python中的地理空间数据处理,减少对Arcgis、PostGIS等工具的依赖,使得处理地理空间数据变得更加高效简洁,打造纯Python式的空间数据处理工作流。本系列文章就将围绕geopandas及其使用过程中涉及到的其他包进行系统性的介绍说明,每一篇将尽可能全面具体地介绍geopandas对应方面的知识,计划涵盖geopandas的数据结构、投影坐标系管理、文件IO、基础地图制作、集合操作、空间连接与聚合。 作为基于geopandas的空间数据分析系列文章的第一篇,通过本文你将会学习到geopandas中的数据结构。 geopandas的安装和使用需要若干依赖包,如果不事先妥善安装好这些依赖包而直接使用pip install geopandas或conda install geopandas可能会引发依赖包相关错误导致安装失败,官方文档中的推荐安装方式为:
shapely-开源GIS库Pysal-空间计量库Geopandas-空间数据分析库Arcpy-arcgis python接口Arcgis API for pythonGeoplot-高阶地理数据可视化接口
本文介绍在ArcMap软件中,为不含有任何坐标系的图层添加地理坐标系或投影坐标系的方法。
首先,我们需要安装 geopandas 和 shapely 库。可以通过以下命令来安装:
本文为《通过深度学习了解建筑年代和风格》论文复现的第三部分——获取阿姆斯特丹高质量街景图像的上篇,主要讲了如何获取利用谷歌街景地图自动化获取用于深度学习的阿姆斯特丹的高质量街景图像,此数据集将用于进行建筑年代的模型训练[1]。
空间索引方法有助于加速空间查询。大多数 GIS 软件和数据库都提供了一种机制来计算和使用数据图层的空间索引。QGIS 和 PostGIS 使用基于 R-Tree 数据结构的空间索引方案 - 它使用几何边界框创建分层树。这是非常有效的,并在某些类型的空间查询中产生了很大的加速。查看我的高级 QGIS 课程的空间索引部分,我将展示如何在 QGIS 中使用基于 R 树的空间索引。
github:https://github.com/Toblerity/Shapely
在气象数据分析中,地理空间要素是一个必须考虑的关键特征项,也是重要的影响因素。例如气温会随着海拔的升高而降低,地形的坡向朝向也会影响风速的分布,此外,典型的地形会形成特定的气候条件,也是数据挖掘中可以利用的区域划分标准。数据分析中,地理空间分析往往能提供有效的信息,辅助进行决策。随着航空遥感行业的发展,积累的卫星数据也成为了数据挖掘的重要数据来源。 地理空间分析有好多软件可以支持,包括Arcgis,QGIS等软件平台,本系列文章将会着重分享python在地理空间分析的应用。主要包括地理空间数据的介绍,常用的python包,对矢量数据的处理,对栅格数据的处理,以及常用的算法和示例。 地理空间数据包括几十种文件格式和数据库结构,而且还在不断更新和迭代,无法一一列举。本文将讨论一些常用的地理空间数据,对地理空间分析的对象做一个大概的了解。 地理空间数据最重要的组成部分:
Google 地球引擎中可用的潜在数据来源。 通过生态示例显示的数据集采样用例。 如何使用 Google 地球引擎访问重要的元数据。
Python 环境下常用的地图绘制包是 Basemap,Cartopy,geopandas,KeplerGl,GeoViews等等,我以前常用的是Basemap,但无奈官方已经在2020年更新了,官方推荐使用Cartopy作为替代。
大家好我是费老师,geopandas作为我们非常熟悉的Python GIS利器,兼顾着高性能和易用性,特别是在其0.12.0版本开始使用全新的shapely2.0矢量计算后端后,性能表现更是一路狂飙。
上个月瑞幸咖啡的酱香拿铁火出圈,让瑞幸再一次出现在聚光灯下,上一次还是财务造假的时候。
大家好我是费老师,geopandas作为在Python中开展GIS分析的利器,可以帮助我们快捷地解决很多日常GIS操作需求。而我们平时工作研究中使用到的各种矢量数据,由于原始数据加工过程的不规范等问题,偶尔会导致某些要素自身的矢量数据信息非法。
如何用Python分析诸如各国人口和GDP数据,各省市房价等地理相关数据,并在地图上优雅地展示你的结果?你需要geopandas!?? 一,GeoPandas总体介绍 geopandas 是pand
在上一篇文章中我们对geopandas中的数据结构展开了较为全面的学习,其中涉及到面积长度等计算的过程中提到了具体的计算结果与所选择的投影坐标系关系密切,投影坐标系选择的不恰当会带来计算结果的偏差,直接关乎整个分析过程的有效与否。
个人博客:https://suveng.github.io/blog/ 2d 地理空间索引 概述 2D地理空间索引可以将文档与二维空间中的位置(例如地图上的点)相关联。MongoDB将位置字段中的二维坐标解释为点,并且可以将这些点编入特殊索引类型以支持基于位置的查询。地理空间索引提供特殊的地理空间查询操作。例如,您可以基于与其他位置的邻近度或基于指定区域中的包含查询文档。
现实生活中的一些流媒体应用场景可能有一些特性,在系统中有 N 个编码器,可能并不处于同一地理位置;有 M 个解码器,可能并不处于同一地理位置,且 M > N;编码器和解码器之间通过互联网连接。在这种系统中,每个编码器在同一时刻获取到的视频帧被要求在同一时刻被解码器解码播放。体育赛事转播和教堂礼拜就是这样的例子。
最近研究了一下GIS、测绘学的坐标转换的问题,感觉大部分资料专业性太强,上来就是一通专业性论述;但感觉对于相关从业者来说,其实不必了解那么多背景知识的;就通过GDAL这个工具,来简单总结下坐标转换相关的问题。 GDAL坐标转换其实也是调用proj4来实现,但是proj4有个特别麻烦的地方,就是坐标系描述的部分特别繁复,需要对专业知识有一定的了解。使用GDAL则相对简单很多。
使用Fiona写入Shapefile数据,主要是构建一个Schema,然后将空间对象转为GeoJSON的形式进行写入。
今天只是分享一些python库,涉及到地理数据分析,数据可视化和数据处理三个方面。
它继承pandas.Series和pandas.Dataframe,实现了GeoSeries和GeoDataFrame类,使得其操纵和分析平面几何对象非常方便。
目录 前言 缓冲区分析 多种类型要素栅格化 总结 参考链接 一、前言 上两篇文章介绍了如何使用Geotrellis进行矢量数据栅格化以及栅格渲染,本文主要介绍栅格化过程中常用到的缓冲区分析以及同一范围内的多种类型要素栅格化。 本文主要记录今天过程中碰到的两个问题,第一个问题就是线状要素在进行栅格化的时候只有单个像素,看不出应有的效果;第二个问题就是同一地区的数据既包含面状要素,又包含了线状要素,普通方式只能栅格化成两套数据。下面我为大家介绍解决这两个问题的方法(当然若有人有更好的
之前在公众号做过一个关于我国1945~2015年历史台风统计的可视化展示,发现很多有趣的数据,比如说台风登陆最多的城市是湛江。
我回答目前常用的库包不能直接绘制这样的桑基图,我错了,应该回答是目前常用的库包不能绘制这样漂亮些的桑基图。
在本系列之前的文章中我们主要讨论了geopandas及其相关库在数据可视化方面的应用,各个案例涉及的数据预处理过程也仅仅涉及到基础的矢量数据处理。
目录 前言 前台实现 后台实现 总结 一、前言 看到这个题目有人肯定会说这有什么可写的,最简单的我只要用文件系统一个个查找、打开就可以实现,再高级一点我可以提取出所有数据的元数据,做个元数据管理系统就可以实现查找功能,有必要用geotrellis用分布式吗?这不是杀鸡用牛刀吗?理论上是这样的,但是要看我们考虑问题的尺度,如果你只是一些简单的数据用传统方法当然好,省事、省时、简单、速度快,但是当我们将数据的量放大到一个区域乃至全球的时候恐怕事情就不是那么简单了,比如我们有了全球Landsat数据
shapely是基于笛卡尔坐标的几何对象操作和分析Python库,底层基于GEOS和JTS库。
这怎么搞呢?他找到一个使用polygon计算matplotlib绘图对象面积的方法
ArcGIS 9.3已经发布,还没有仔细研究what’s new in arcgis 9.3,但这次版本升级确实带来了不少新的变化,等新版本全面铺开之后,我们可以渐渐体会到新版本所带来的改进与新功能。
在本系列之前的文章中我们主要讨论了geopandas及其相关库在数据可视化方面的应用,各个案例涉及的数据预处理过程也仅仅涉及到基础的矢量数据处理。在实际的空间数据分析过程中,数据可视化只是对最终分析结果的发布与展示,在此之前,根据实际任务的不同,需要衔接很多较为进阶的空间操作,本文就将对geopandas中的部分空间计算进行介绍。
多模态融合视觉定位方法,2020的ACM-MM,主要的创新点就是提出了一个融合LIDAR和IMAGE这两个模态,进行视觉定位,将定位任务转换为检索任务,总结来说,最大的意义在于提出了这个框架,并且证明了多模态融合视觉定位的有效性,但是框架里的很多细节都很粗糙,比如说不同信息的组合在文章中是十分简单的,也就是说有很大的提升空间。
大家好我是费老师,我写过很多篇介绍geopandas相关技术的文章,而geopandas之所以如此高效易用,成为Python GIS生态中的翘楚,离不开其底层依赖库shapely对其矢量计算功能的支持。
1、把财务预测移到WPS,可以实现线上增加数据,就可以计算结果,不需要安装python软件、配置环境,可以方便分析,可以出图可视化
这是一篇关于关于空间地理信息数据可视化与simple feature 模型应用的笔记小结。
由一台路由器(或交换机)和多台计算机设备组成的小型网络。在这样的网络中,通过路由器的中转,每两台计算机之间都可以自由地传递文件。
读者的问题涉及到地理信息系统(GIS)操作的一系列步骤,具体包括将栅格数据转换为点数据、为这些点数据添加XY坐标、通过空间连接给这些点添加行政区属性、以及计算指定行政区的质心。读者在使用ArcGIS软件完成前两步时未遇到明显问题,但在执行第三步时遇到了性能瓶颈,即使用ArcGIS和GeoPandas进行空间连接操作时系统会卡死。为了解决这个问题,读者尝试使用了dask-geopandas来处理约两百万个点的数据,但似乎遇到了错误。
每年夏季,台风就如期而至。今年八月份,“风王”利奇马真的如脱缰野马,让大家见识到台风的可怕之处。
很久没更新公众号啦,给看客老爷们汇报下我最近都在忙啥。由于工作和自己的原因,需要搞一点科研,这一直是我的短板。所以我浅学了一下大学数学(线代、高数和概率论),准备结合Python做一些事情。后面可能会更新我学数学的一些心得,大家记得关注哦(我先学会再说)。
各位看官老爷,如果觉得对您有用麻烦赏个子,创作不易,0.1元就行了。下面是微信乞讨码:
每天给你送来NLP技术干货! ---- 源 | 百度NLP 排版 | 夕小瑶的卖萌屋 本文介绍『文心大模型』的一项最新工作:“地理位置-语言”预训练模型ERNIE-GeoL。 论文链接: https://arxiv.org/abs/2203.09127 实践中的观察 近年来,预训练模型在自然语言处理、视觉等多个领域都取得了显著效果。基于预训练模型,利用特定任务的标注样本进行模型微调,通常可以在下游任务取得非常好的效果。 然而,通用的预训练语言模型在应用于地图业务(如POI检索、POI推荐、POI信息处理等
ArcGIS是由ESRI公司推出的一款广泛应用于地理信息系统领域的软件,提供了强大的地理数据分析和处理功能,并支持多种格式的地理空间数据。该软件除了提供基本的地图制作和编辑功能,还支持各种专业分析工具,如空间分析、网络分析、地形分析等,成为地理信息系统领域最流行和最实用的软件之一。本文将对ArcGIS的主要功能和使用技巧进行介绍,并结合实际案例进行详细说明。
建立微服务的真正道路是事件驱动,这是一个有着DDD, CQRS, Event-sourcing, event streaming, complex-event processing(CEP) 等背景以及丰富JavaEE技术经验的架构师的认识,他经历了从传统整体型monolith到微服务架构之转变,细节技术涉及从容器技术 (Docker, Kubernetes) 到JVM层 (Spring Boot 和 WildFly Swarm)到应用架构(事件, 命令, 流streaming, 原始事件, 聚合, 聚合根, 事务, CQRS, 等等),他会在六月的Red Hat Summit演讲上详细陈述。 这里他从自主性与权威性的比较角度来谈论微服务为什么应该是事件驱动,原文见:Why Microservices Should Be Event Driven: Autonomy 首先,我们使用微服务是为了构建一个业务敏捷的IT系统,也就是能跟随业务快速变化的IT系统,这样才能保证我们的业务能力始终保持竞争力。而自治系统是能够相互交互提供业务敏捷,包括如果系统发生问题怎么办?系统如何克服问题?提供业务敏捷和失败容错的系统就是自治autonomy。 自治系统能够独立于彼此演进,因为他们本质上是彼此没有依赖的,改变一个服务A不会强迫系统B改变,包括引起任何其他涟漪影响,如果服务A是服务B依赖的,服务A死了,那么服务B也会死期不远。 那么自治性除了微服务以外,其他方面还需要什么?如果你阅读过http://blog.christianposta.com/microservices/the-real-success-story-of-microservices-architectures/,你会知道不是技术让Netflix和亚马逊的微服务获得成功,而是组织系统结构。 与敏捷系统的相同类型的一些例子包括:开源社区、城市、股票市场、蚂蚁群、成群的鸟类和其他的。它们可以进化,响应react环境,甚至持续在面对巨大的失败,事实上,它们都是属于复杂自适应系统的理论研究领域。这些系统之间的共同点是什么?目标,自治性和对环境的反应。自治意味着 对“事件”的“反应react” 。 当有什么事情发生时,自治者(蚂蚁 人或服务)会做某些事或不做某些事,但是总体来说,是这些发生事情的事件驱动了它们的行为,想想你(作为一个独立自主与自治的人)在一天中做的事情:你醒过来,基于温度穿衣服(事件或事实),你开车和去工作(在停车灯停下来(事件),避免驾驶人发生不正常事件等)。这些都是对事件的回应。你会收到收件箱里的电子邮件,你会回应。你会从你妻子提供的文本中挑选一篇关于家庭的晚餐,等等,我们生活在对事件的反应中。建立在事件的IT系统也可以是同样拥有自主性,可扩展性和弹性应对失败。 从权限到自治自主并拥抱最终一致性 在大多数分布式系统实现中,我们倾向于在一个单一地理空间建立跨不可靠网络的系统,这在很多方面都是坏主意,我们倾向于调用远程对象,驱动它们做某些事情,或者我们调用一个远程服务进行数据查找,如果是购物车服务,我们需要计算购物车中所有商品的最终价格以便支付,这样购物车服务会调用计价服务,计价服务也许会调用计税服务以基于价格根据不同洲税调整最终价格,计税服务也许会调用产品目录服务,货运服务也许会调用库存服务等等,最后也许需要经过一长段调用才会结束,我们正在遵循“authority权限”模式进行数据访问,我们调用那些对数据拥有权限的服务,这有点像共享全局状态,它们也有另外一个理由,因为事务性或ACID需要这样整合在一起调用。 这可能会导致瓶颈。如果服务链中的某些服务不可用,它也会导致其他服务挂起以及级联崩溃性故障。它也可能导致一些奇怪的依赖关系,比如库存服务暴露给税务服务的出数据和航运服务使用的数据会不同。或者它公开了一个单一格式的数据,但其中有很多额外的细节是这两个服务都不真正关心的。 如果我们以不同方式来看这个模型?如果我们颠倒这个模型,我们不再依赖和调用那些对数据拥有权限的服务,而是依赖时间和事件(如同我们现实世界一样)重新理解上下文场景和环境。 我们刚刚从周围环境发现从美国到古巴的航运刚刚推出了一个较低的税收,这是一个发生的事实,我们可以观察和反应,或者忽视不做任何事。 如果我们能了解到对运送到古巴的税收现在已经降低了,那么在我们展示购物车页面时,我们就可以捕捉这样的数据以便未来可能的查询,然后我们可以有更多的自主权,我们可以在我们自己的数据库中存储该信息息或该信的衍生物,这将为我们提供的服务类型进行优化。如果我们必须对我们的服务进行版本的修改,我们就可以把重点放在我们自己的架构和数据上,而不必担心更改时其他相关服务会发生什么。 什么是最终一致性? 响应事件而不是“及时”查询权限系统会让我们更具有自主性,更有容错能力和弹性,
「OD数据」是交通、城市规划以及GIS等领域常见的一类数据,特点是每一条数据都记录了一次OD(O即Origin,D即Destination)行为的起点与终点坐标信息。
领取专属 10元无门槛券
手把手带您无忧上云