首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用dropna删除Pandas中列子集上的列

在Pandas中,可以使用dropna()方法删除包含缺失值的行或列。如果要删除列子集上的列,可以将axis参数设置为1。

具体步骤如下:

  1. 导入Pandas库:首先需要导入Pandas库,以便使用其中的函数和方法。
代码语言:txt
复制
import pandas as pd
  1. 创建DataFrame:创建一个包含列子集的DataFrame。
代码语言:txt
复制
data = {'A': [1, 2, None, 4, 5],
        'B': [None, 2, 3, 4, 5],
        'C': [1, 2, 3, 4, 5]}
df = pd.DataFrame(data)
  1. 使用dropna()删除列子集上的列:调用dropna()方法,并将axis参数设置为1,表示删除列。
代码语言:txt
复制
df.dropna(axis=1, subset=['A', 'B'], inplace=True)

在上述代码中,subset参数指定了要删除的列子集,即'A'和'B'列。inplace参数设置为True,表示在原始DataFrame上进行修改,如果设置为False,则会返回一个新的DataFrame。

完整的代码如下:

代码语言:txt
复制
import pandas as pd

data = {'A': [1, 2, None, 4, 5],
        'B': [None, 2, 3, 4, 5],
        'C': [1, 2, 3, 4, 5]}
df = pd.DataFrame(data)

df.dropna(axis=1, subset=['A', 'B'], inplace=True)

关于Pandas的dropna()方法的更多信息,可以参考腾讯云的相关产品文档:Pandas dropna()方法

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

对比Excel,Python pandas删除数据框架

标签:Python与Excel,pandas 删除也是Excel常用操作之一,可以通过功能区或者快捷菜单命令或者快捷键来实现。...一篇文章,我们讲解了Python pandas删除数据框架中行一些方法,删除与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...准备数据框架 创建用于演示删除数据框架,仍然使用前面给出“用户.xlsx”数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除。...图2 del方法 del是Python一个关键字,可用于删除对象。我们可以使用它从数据框架删除。 注意,当使用del时,对象被删除,因此这意味着原始数据框架也会更新以反映删除情况。...实际我们没有删除,而是创建了一个新数据框架,其中只包含用户姓名、城市和性别,有效地“删除”了其他两。然后,我们将新创建数据框架赋值给原始数据框架以完成“删除操作”。注意代码双方括号。

7.2K20

删除 NULL 值

图 2 输出结果 先来分析图 1 是怎么变成图 2,图1 tag1、tag2、tag3 三个字段都存在 NULL 值,且NULL值无处不在,而图2 里面的NULL只出现在这几个字段末尾。...有一个思路:把每一去掉 NULL 后单独拎出来作为一张独立表,这个表只有两个字段,一个是序号,另一个是去 NULL 后值。...比如 tag1 变成 t1 表,tag2 变成 t2 表,tag3 变成 t3 表。...一个比较灵活做法是对原表数据做转行,最后再通过行转列实现图2 输出。具体实现看下面的 SQL(我偷懒了,直接把原数据通过 SELECT 子句生成了)。...,按值在原表列出现顺序设置了序号,目的是维持同一相对顺序不变。

9.8K30
  • Pandas如何查找某中最大值?

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,问题如下:譬如我要查找某中最大值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通,也能顺利地解决自己问题。...顺利地解决了粉丝问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出问题,感谢【瑜亮老师】给出思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    34610

    如何Pandas DataFrame 插入一

    然而,对于新手来说,在DataFrame插入一可能是一个令人困惑问题。在本文中,我们将分享如何解决这个问题方法,并帮助读者更好地利用Pandas进行数据处理。...为什么要解决在Pandas DataFrame插入一问题? Pandas DataFrame是一种二维表格数据结构,由行和组成,类似于Excel表格。...解决在DataFrame插入一问题是学习和使用Pandas必要步骤,也是提高数据处理和分析能力关键所在。 在 Pandas DataFrame 插入一个新。...本教程展示了如何在实践中使用此功能几个示例。...总结: 在Pandas DataFrame插入一是数据处理和分析重要操作之一。通过本文介绍,我们学会了使用Pandas库在DataFrame插入新

    72910

    使用VBA删除工作表多重复行

    标签:VBA 自Excel 2010发布以来,已经具备删除工作表重复行功能,如下图1所示,即功能区“数据”选项卡“数据工具——删除重复值”。...图1 使用VBA,可以自动执行这样操作,删除工作表所有数据重复行,或者指定重复行。 下面的Excel VBA代码,用于删除特定工作表所有所有重复行。...Cols(i) = i + 1 Next i rng.RemoveDuplicates Columns:=(Cols), Header:=xlYes End Sub 这里使用了当前区域...如果只想删除指定(例如第1、2、3重复项,那么可以使用下面的代码: Sub DeDupeColSpecific() Cells.RemoveDuplicates Columns:=Array...(1, 2, 3), Header:=xlYes End Sub 可以修改代码中代表列数字,以删除你想要重复行。

    11.3K30

    Excel与pandas使用applymap()创建复杂计算

    标签:Python与Excel,pandas 我们之前讨论了如何pandas创建计算,并讲解了一些简单示例。...图1 创建一个辅助函数 现在,让我们创建一个取平均值函数,并将其处理/转换为字母等级。 图2 现在我们要把这个函数应用到每个学生身上。那么,在对每个学生进行循环?不!...pandas applymap()方法 pandas提供了一种将自定义函数应用于或整个数据框架简单方法,就是.applymap()方法,这有点类似于map()函数作用。...注意下面的代码,我们只在包含平均值应用函数。因为我们知道第一包含字符串,如果我们尝试对字符串数据应用letter_grade()函数,可能会遇到错误。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三每一分别使用map(),而applymap()能够覆盖整个数据框架(多)。

    3.9K10

    如何使用pandas读取txt文件中指定(有无标题)

    最近在倒腾一个txt文件,因为文件太大,所以给切割成了好几个小文件,只有第一个文件有标题,从第二个开始就没有标题了。 我需求是取出指定数据,踩了些坑给研究出来了。...import pandas as pd # 我们需求是 取出所有的姓名 # test1内容 ''' id name score 1 张三 100 2 李四 99 3 王五 98 ''' test1...补充知识:关于pythonpandas读取txt文件注意事项 语法:pandas.read_table() 参数: filepath_or_buffer 文件路径或者输入对象 sep 分隔符,默认为制表符...names 读取哪些以及读取顺序,默认按顺序读取所有 engine 文件路径包含中文时候,需要设置engine = ‘python’ encoding 文件编码,默认使用计算机操作系统文字编码...以上这篇如何使用pandas读取txt文件中指定(有无标题)就是小编分享给大家全部内容了,希望能给大家一个参考。

    10.1K50

    Pandas基础使用系列---获取行和

    前言我们上篇文章简单介绍了如何获取行和数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定数据我们依然使用之前数据。...我们先看看如何通过切片方法获取指定所有行数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行位置我们使用类似python切片语法。...我们试试看如何将最后一也包含进来。info = df.iloc[:, [1, 4, -1]]可以看到也获取到了,但是值得注意是,如果我们使用了-1,那么就不能用loc而是要用iloc。...如果要使用索引方式,要使用下面这段代码df.iloc[2, 2]是不是很简单,接下来我们再看看如何获取多行多。为了更好演示,咱们这次指定索引df = pd.read_excel(".....通常是建议这样获取,因为从代码可读性更容易知道我们获取是哪一行哪一。当然我们也可以通过索引和切片方式获取,只是可读性没有这么好。

    60800

    pandas每天一题-题目15:删除多种方式

    这是一个关于 pandas 从基础到进阶练习题系列,来源于 github guipsamora/pandas_exercises 。...需求:各种删除方式 下面是答案了 ---- 方式1 这是 python 删除变量操作,同样适用于 DataFrame 删除: 1del df['order_id'] 2df 也可以同时删除...方法: 1df.drop('order_id',axis=1) 方法直接返回删除新表格(DataFrame) 参数 axis=1,表示删除。...pandas 为此提供了一个方法直接完成2个操作: 1ids = df.pop('order_id') pop 方法会提取指定并返回,然后从 df 移除这一 这与方式1一样是会修改原数据 点评:...此方法没啥大作用,不推荐使用 ---- 推荐阅读: 懂Excel就能轻松入门Python数据分析包pandas(八):匹配查找 pandas输出表格竟然可以动起来?

    65620

    Pandas更改数据类型【方法总结】

    例如,上面的例子,如何2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每类型?...理想情况下,希望以动态方式做到这一点,因为可以有数百个,明确指定哪些是哪种类型太麻烦。可以假定每都包含相同类型值。...DataFrame 如果想要将这个操作应用到多个,依次处理每一是非常繁琐,所以可以使用DataFrame.apply处理每一。...']}, dtype='object') >>> df.dtypes a object b object dtype: object 然后使用infer_objects(),可以将’a’类型更改为...astype强制转换 如果试图强制将两转换为整数类型,可以使用df.astype(int)。 示例如下: ? ?

    20.3K30

    pythonpandasDataFrame对行和操作使用方法示例

    pandasDataFrame时选取行或: import numpy as np import pandas as pd from pandas import Sereis, DataFrame...'w'使用类字典属性,返回是Series类型 data.w #选择表格'w'使用点属性,返回是Series类型 data[['w']] #选择表格'w',返回是DataFrame...下面是简单例子使用验证: import pandas as pd from pandas import Series, DataFrame import numpy as np data = DataFrame...不过这个用起来总是觉得有点low,有没有更好方法呢,有,可以不去删除,直接: data7 = data6.ix[:,1:]1 这样既不改变原有数据,也达到了删除神烦,当然我这里时第0删除,可以根据实际选择所在删除之...github地址 到此这篇关于pythonpandasDataFrame对行和操作使用方法示例文章就介绍到这了,更多相关pandas库DataFrame行列操作内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    13.4K30

    pandasloc和iloc_pandas获取指定数据行和

    大家好,又见面了,我是你们朋友全栈君 实际操作我们经常需要寻找数据某行或者某,这里介绍我在使用Pandas时用到两种方法:iloc和loc。...读取第二行值 (2)读取第二行值 (3)同时读取某行某 (4)进行切片操作 ---- loc:通过行、名称或标签来索引 iloc:通过行、索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...[1,:] (2)读取第二值 # 读取第二全部值 data2 = data.loc[ : ,"B"] 结果: (3)同时读取某行某 # 读取第1行,第B对应值 data3...3, 2:4]第4行、第5取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    8.8K21

    python如何删除列为空

    1.摘要 dropna()方法,能够找到DataFrame类型数据空值(缺失值),将空值所在行/删除后,将新DataFrame作为返回值返回。...如果该行/,非空元素数量小于这个值,就删除该行/。 subset:子集。列表,元素为行或者索引。...按删除:该非空元素小于5个,即删除 #按删除:该非空元素小于5个,即删除 print(d.dropna(axis='columns',thresh=5)) ?...设置子集删除第0、5、6、7都为空行 #设置子集删除第0、5、6、7都为空行 print(d.dropna(axis='index',how='all',subset=[0,5,6,7]))...设置子集删除第5、6、7行存在空值 #设置子集删除第5、6、7行存在空值 print(d.dropna(axis=1,how='any',subset=[5,6,7])) ?

    6.9K30

    如何使用python连接MySQL表值?

    提供了有关如何连接到MySQL数据库,执行SQL查询,连接值以及最终使用Python打印结果分步指南。...此技术对于需要使用 MySQL 数据库数据分析师和开发人员等个人特别有用,他们需要将多个值合并到一个字符串。...我们可以使用 close() 方法关闭连接对象,如下所示: connection.close() 这将释放连接和游标对象占用资源,允许程序其他部分或系统运行其他程序使用它们。...这将打印 employee 表每一行first_name和last_name串联值。...结论 总之,我们已经学会了如何使用Python连接MySQL表值,这对于任何使用关系数据库的人来说都是一项宝贵技能。

    23130
    领券