首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在 PyTorch 中使用梯度检查点在GPU 上训练更大的模型

来源:Deephub Imba 本文约3200字,建议阅读7分钟 本文将介绍解梯度检查点(Gradient Checkpointing),这是一种可以让你以增加训练时间为代价在 GPU 中训练大模型的技术...我们将在 PyTorch 中实现它并训练分类器模型。 作为机器学习从业者,我们经常会遇到这样的情况,想要训练一个比较大的模型,而 GPU 却因为内存不足而无法训练它。...并且由于梯度下降算法的性质,通常较大的批次在大多数模型中会产生更好的结果,但在大多数情况下,由于内存限制,我们必须使用适应GPU显存的批次大小。...通过执行这些操作,在计算过程中所需的内存从7减少到3。 在没有梯度检查点的情况下,使用PyTorch训练分类模型 我们将使用PyTorch构建一个分类模型,并在不使用梯度检查点的情况下训练它。...使用梯度检查点进行训练,如果你在notebook上执行所有的代码。

92820

卷积神经网络

该模型在GPU上的训练时间的几个小时内实现了大约86%的精度峰值性能。请参阅下面的代码和详细信息。它由1,068,298个可学习的参数组成,并且需要大约19.5M的乘法运算来计算单个图像上的推断。...例如,我们可以看到local3在训练过程中,特征的激活分布和稀疏度如何发展: ? ? 个人损失功能以及总损失,随着时间的过去特别有趣。然而,由于训练所使用的小批量,损失表现出相当大的噪音。...为了监控模型在训练过程中如何改进,评估脚本会定期运行在最新的检查点文件上cifar10_train.py。...在具有多个GPU卡的工作站中,每个GPU将具有相似的速度并包含足够的内存来运行整个CIFAR-10模型。因此,我们选择以下列方式设计培训系统: 在每个GPU上放置单个模型副本。...在多个GPU卡上启动和训练模型 如果您的机器上安装了几个GPU卡,则可以使用它们使用cifar10_multi_gpu_train.py脚本更快地对模型进行训练。

1.3K100
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Batch Size对神经网络训练的影响

    结合一些理论知识,通过大量实验,文章探讨了Batch Size的大小对模型性能的影响、如何影响以及如何缩小影响等有关内容。 在本文中,我们试图更好地理解批量大小对训练神经网络的影响。...训练神经网络以最小化以下形式的损失函数: theta 代表模型参数 m 是训练数据样本的数量 i 的每个值代表一个单一的训练数据样本 J_i 表示应用于单个训练样本的损失函数 通常,这是使用梯度下降来完成的...因此,“holy grail”是使用大批量实现与小批量相同的测试误差。这将使我们能够在不牺牲模型准确性的情况下显着加快训练速度。 实验是如何设置的?...为了回答这个问题,我们使用 TensorFlow 中的 MirroredStrategy 在四个 GPU 上并行训练: with tf.distribute.MirroredStrategy().scope...然后,它使用 all-reduce 组合来自每个 GPU 的梯度,然后将结果应用于每个 GPU 的模型副本。本质上,它正在划分批次并将每个块分配给 GPU。

    1K21

    Batch Size对神经网络训练的影响

    训练神经网络以最小化以下形式的损失函数: theta 代表模型参数 m 是训练数据样本的数量 i 的每个值代表一个单一的训练数据样本 J_i 表示应用于单个训练样本的损失函数 通常,这是使用梯度下降来完成的...使用更大的批量大小可以让我们在更大程度上并行计算,因为我们可以在不同的工作节点之间拆分训练示例。这反过来可以显着加快模型训练。...因此,“holy grail”是使用大批量实现与小批量相同的测试误差。这将使我们能够在不牺牲模型准确性的情况下显着加快训练速度。 实验是如何设置的?...为了回答这个问题,我们使用 TensorFlow 中的 MirroredStrategy 在四个 GPU 上并行训练: with tf.distribute.MirroredStrategy().scope...然后,它使用 all-reduce 组合来自每个 GPU 的梯度,然后将结果应用于每个 GPU 的模型副本。本质上,它正在划分批次并将每个块分配给 GPU。

    67730

    腾讯高性能计算服务星辰.机智,海量算力,智造未来

    · 训练流程:   使用推荐类自研信息流训练框架训练的信息流业务中,主要有如下4种不同的训练流程:批量离线训练,批量在线训练,流式在线训练,流式在线预测。...Part2:大batchsize收敛性上 1)大bs的评估       Noise_Scale评估Batchsize 一个容易在模型训练时得到的量化指标:Gradient Noise Scale(以下简称...④ 超收敛组件-使用周期学习率,让学习率在合理范围内进行周期性变化,并使用一个较大的最大学习率进行训练,能以更少的步骤提高模型的准确率。      ...⑤ 混合精度训练-自适应缩放梯度组件,自适应缩放梯度,保证梯度有效值 关于在不同场景batchsize究竟大到多少合适的普适性研究及如何在大batchsize下保持收敛性,也是我们正在研究解决的一个问题...此外,在如何方便的使用机智做训练这个点上,机智也做了完整的建设,包括怎么样解决缺少数据问题(和AI数据堂集成),怎么样解决数据从存储集群到计算集群读取耗时的问题(IO缓存系统),怎么样方便的使用机智加速

    2.8K41

    实战Google深度学习框架:TensorFlow计算加速

    作者:才云科技Caicloud,郑泽宇,顾思宇 要将深度学习应用到实际问题中,一个非常大的问题在于训练深度学习模型需要的计算量太大。...本文将介绍如何在TensorFlow中使用单个GPU进行计算加速,也将介绍生成TensorFlow会话(tf.Session)时的一些常用参数。通过这些参数可以使调试更加方便而且程序的可扩展性更好。...然而,在很多情况下,单个GPU的加速效率无法满足训练大型深度学习模型的计算量需求,这时将需要利用更多的计算资源。为了同时利用多个GPU或者多台机器,10.2节中将介绍训练深度学习模型的并行方式。...然后,10.3节将介绍如何在一台机器的多个GPU上并行化地训练深度学习模型。在这一节中也将给出具体的TensorFlow样例程序来使用多GPU训练模型,并比较并行化效率提升的比率。...02 深度学习训练并行模式 TensorFlow可以很容易地利用单个GPU加速深度学习模型的训练过程,但要利用更多的GPU或者机器,需要了解如何并行化地训练深度学习模型。

    1.1K70

    译:Tensorflow实现的CNN文本分类

    默认情况下,TensorFlow将尝试将操作放在GPU上(如果有的话)可用,但是嵌入式实现当前没有GPU支持,并且如果放置在GPU上会引发错误。...3.7 TRAINING PROCEDURE 在我们为网络定义训练程序之前,我们需要了解一些关于TensorFlow如何使用Sessions和Graphs的基础知识。...在TensorFlow中, Session是正在执行graph 操作的环境,它包含有关变量和队列的状态。每个 Session都在单个graph上运行。...例如,如果我们的代码在GPU上放置一个操作,并且我们在没有GPU的机器上运行代码,则不使用allow_soft_placement将导致错误。...有几件事情脱颖而出: 我们的训练指标并不平滑,因为我们使用小批量。 如果我们使用较大的批次(或在整个训练集上评估),我们会得到一个更平滑的蓝线。

    1.3K50

    CUDA Out of Memory :CUDA内存不足的完美解决方法

    这类问题常见于使用TensorFlow、PyTorch等深度学习框架时,由于处理大规模数据集或模型超出GPU显存导致内存溢出。...这是由GPU硬件资源的限制导致的常见问题,尤其是在处理大数据集或超大型神经网络模型时。 常见场景 训练大型神经网络时,模型权重和梯度更新消耗了大量显存。...import torch torch.cuda.empty_cache() # 手动清理显存 使用分布式训练:通过分布式训练或者数据并行技术将模型分布到多个GPU上,从而减轻单个GPU的显存压力。...小结 CUDA内存不足是GPU深度学习开发中非常常见的问题,尤其是在训练大型模型或处理大批量数据时。...通过优化代码、调整模型结构、合理配置批量大小,以及在必要时使用梯度累积或分布式训练,我们可以有效应对这一挑战。GPU资源有限,因此在实际应用中学会优化显存管理至关重要。

    2.8K10

    GPU捉襟见肘还想训练大批量模型?谁说不可以

    选自Medium 机器之心编译 深度学习模型和数据集的规模增长速度已经让 GPU 算力也开始捉襟见肘,如果你的 GPU 连一个样本都容不下,你要如何训练大批量模型?...通过本文介绍的方法,我们可以在训练批量甚至单个训练样本大于 GPU 内存时,在单个或多个 GPU 服务器上训练模型。 2018 年的大部分时间我都在试图训练神经网络时克服 GPU 极限。...但在多数情况下,随机梯度下降算法需要很大批量才能得出不错的结果。 如果你的 GPU 只能处理很少的样本,你要如何训练大批量模型? 有几个工具、技巧可以帮助你解决上述问题。...我们将着重探讨以下问题: 在训练批量甚至单个训练样本大于 GPU 内存,要如何在单个或多个 GPU 服务器上训练模型; 如何尽可能高效地利用多 GPU 机器; 在分布式设备上使用多个机器的最简单训练方法...在一个或多个 GPU 上训练大批量模型 你建的模型不错,在这个简洁的任务中可能成为新的 SOTA,但每次尝试在一个批量处理更多样本时,你都会得到一个 CUDA RuntimeError:内存不足。

    1.5K30

    初创公司如何训练大型深度学习模型

    数据集越大,每次迭代或“轮数”的时间就越长。即使提前停止,在一个大的数据集上训练一个大的模型,进行 20~50 次的迭代,也会花费很多时间。...如果你的模型需要 3~4 个星期进行训练,你是如何快速迭代的? 使用更多 GPU 训练 减少训练时间的最简单方法是在更多的 GPU 上训练模型。...这个速度几乎是单个 GPU 的 3 倍。 不过,值得注意的是,更大的批量(batch)并不总是等同于更快的训练时间。如果你的有效批量大小过大,你的模型的总体收敛性将开始受到影响。...GPU 性能并非线性增长 训练的 GPU 越多,通信的开销就越大。因此,在 8 个 GPU 上训练的速度并不会比在单个 GPU 上训练快 8 倍。...很多时候,你并不需要最昂贵的 GPU 卡(现在的 A100)来在合理的时间内训练你的模型。而且,最新、最好的 GPU 通常不会立刻被 PyTorch 和 TensorFlow 等流行框架所支持。

    1.5K10

    模型并行分布式训练Megatron (1) --- 论文 & 基础

    即使我们能够把模型放进单个GPU中(例如,通过在主机和设备内存之间交换参数),但是其所需的大量计算操作会导致漫长训练时间(例如,使用单个V100 NVIDIA GPU来训练1750亿个参数的GPT-3需要大约...对于无法放进单个worker的大型模型,人们可以在模型之中较小的分片上使用数据并行。...因为较大的模型需要在多个多GPU服务器上分割,这导致了两个问题。...Megatron-LM 开发人员展示了一个如何结合流水线、张量和数据并行,名为PTD-P的技术,这项技术将以良好的计算性能(峰值设备吞吐量的52%)在1000个GPU上训练大型语言模型。...3.4 Microbatch Size 微批尺寸 的选择也影响到模型训练的吞吐量。例如,在单个GPU上,如果微批尺寸较大,每个GPU的吞吐量最多可增加1.3倍。

    3.2K10

    全面对比英伟达Tesla V100P100的RNN加速能力

    这些数据边可以传送维度可动态调整的多维数据数组,即张量(tensor)。 TensorFlow 允许我们将模型部署到台式电脑、服务器或移动设备上,并调用这些设备上的单个或多个 CPU 与 GPU。...开发者一般使用 Python 编写模型和训练所需的算法,而 TensorFlow 会将这些算法或模型映射到一个计算图,并使用 C++、CUDA 或 OpenCL 实现图中每一个结点的计算。...网络的所有权重会先执行随机初始化,且输入序列因为基准测试的原因而采取随机生成的方式。 我们比较了模型在 Pascal 和 VoltaGPU 上的性能,且系统所使用的配置如下所示: ?...性能度量包括完整的算法执行时间(使用梯度下降的时间加上推断的时间),训练的输入为批量大小为 128 的 10 万批数据,且每一个序列长度为 32 个样本。...训练 以下两图展示了 V100 和 P100 GPU 在训练过程中对 RNN 和 LSTM 的加速,这个过程的单精度(FP32)和半精度(FP16)运算都是使用的 NGC 容器。

    2.9K90

    教程 | TensorFlow 官方解读:如何在多系统和网络拓扑中构建高性能模型

    使用 GPU 训练模型时会经常用到 NCHW。NHWC 在 CPU 中有时速度更快。...在 GPU 中可以使用 NCHW 对一个灵活的模型进行训练,在 CPU 中使用 NHWC 进行推理,并从训练中获得合适的权重参数。...当每个模型需要变量时,它们将被复制到由 Tensorflow 运行时添加的标准隐式副本中。示例脚本介绍了使用此方法如何进行本地训练、分布式同步训练和分布式异步训练。...服务器间的梯度聚合可通过不同的方法实现: 使用 Tensorflow 标准操作在单个设备上(CPU 或 GPU)累加整和,然后将其拷贝回所有的 GPU。...NCCL 是英伟达的一个库,可以跨不同的 GPU 实现数据的高效传输和聚合。它在每个 GPU 上分配一个协作内核,这个内核知道如何最好地利用底层硬件拓扑结构,并使用单个 SM 的 GPU。

    1.7K110

    使用ONNX和Torchscript加快推理速度的测试

    这些庞大的模型通常需要数百个GPU进行数天的训练才能发挥作用,幸运的是,多亏了迁移学习,我们可以下载预训练的模型,并在我们自己的更小的数据集上快速地以低成本调整它们。...也就是说,一旦训练完成,我们手中有一个庞大的模型,如果想要将其部署到生产中与其他模型相比,推理需要相对较长的时间,而且它可能太慢,无法达到需要的吞吐量。...第一种和第二种方法通常意味着对模型进行重新训练,而后两种方法则是在训练后完成的,本质上与您的特定任务无关。 如果推理速度对用例极为重要,那么很可能需要尝试所有这些方法以生成可靠且快速的模型。...正如预期的那样,推理在GPU上要快得多,特别是在批处理大小较大的情况下。...我们还可以看到,理想的批处理大小取决于使用的GPU: 对于T4来说,最好的设置是用8个批次的样本运行ONNX,这比pytorch上的批大小为1的速度快了大约12倍 对于批量为32或64的V100,与GPU

    3K10

    如何修复TensorFlow中的`ResourceExhaustedError

    在本篇博客中,我们将深入探讨如何修复TensorFlow中的ResourceExhaustedError。这个错误通常在处理大规模数据集或复杂模型时出现,了解并解决它对顺利进行模型训练非常重要。...引言 在深度学习训练过程中,尤其是使用TensorFlow时,ResourceExhaustedError是一个常见的问题。这个错误通常由内存不足引起,可能是由于GPU显存或CPU内存被耗尽。...优化代码和配置 3.1 使用混合精度训练 原因:混合精度训练可以有效减少内存使用,并加快训练速度。 解决方案:使用TensorFlow的混合精度训练API。...高级解决方案 4.1 分布式训练 原因:单个GPU或CPU的内存不足以应对大规模模型或数据。 解决方案:使用TensorFlow的分布式策略。...小结 在这篇文章中,我们详细探讨了TensorFlow中的ResourceExhaustedError错误的成因,并提供了多种解决方案,包括减小批量大小、手动释放内存、使用混合精度训练、分布式训练等。

    10910

    为了加速在GPU上进行深度学习训练,NVIDIA原来还做了这么多事情,你都知道么?

    优化的框架 MXNet 这个最新的版本在很大程度上改进了训练深度学习模型的性能,在这种模型中,GPU的训练性能在大范围的批处理大小中进行优化是至关重要的。...这些优化使得在使用18.11 MXNet容器在单个Tesla V100 GPU上使用张量核心混合精度在批量大小为32的批量训练ResNet-50时,吞吐量为1060张图像/秒,而使用18.09 MXNet...然而,在谷歌的gpu内部模型上,性能的提高有望达到3倍。...PyTorch NVIDIA与PyTorch开发社区紧密合作,不断提高在Volta张量核心gpu上训练深度学习模型的性能。Apex是一套轻量级的PyTorch扩展,由英伟达维护以加速训练。...例如,在DGX-1V、8 Tesla V100 gpu上训练SSD网络(带有ResNet-34骨干)时,使用cuDNN新的NHWC和融合批处理规范化支持,与使用NCHW数据布局运行且没有融合批处理规范化相比

    2.3K40

    128块Tesla V100 4小时训练40G文本,这篇论文果然很英伟达

    接着研究人员通过 128GPU 的分布式数据并行,使用 32k 的批大小训练了混合精度模型。这比起使用单个 GPU,训练的数据量增加了 109 倍。...研究人员分析了分布式数据并行是如何随着模型增大而扩展的。在使用分布式数据并行训练 RNN 时,他们观察到一些训练时批量过大会出现的常见问题。...通过使用混合精度算术运算,我们在 128 块英伟达 Tesla V100 GPU 使用 32k 的批大小进行分布式训练,因此可以在 40GB 的亚马逊评论(Amazon Reviews)数据集上针对无监督文本重建任务训练一个字符级...在单个 GPU 上运行这么大的工作负载不切实际,因为当前最优模型一般会比较大,且每个 GPU 能够承担的训练批量大小有限。为了保证有效的训练和迁移大型语言模型,我们使用多 GPU 并行化训练。...为保证任意语言模型的大批量预训练,明确分析使用基于 RNN 的语言模型进行大批量预训练的效果非常重要。

    60140

    横扫各项NLP任务的BERT模型有了PyTorch实现!提供转换脚本

    BERT-base和BERT-large模型的参数数量分别为110M和340M,为了获得良好的性能,很难使用推荐的batch size在单个GPU上对其进行微调。...run_classifier.py脚本提供了关于如何使用此类模型的示例,该脚本可用于使用BERT微调单个序列(或序列对)分类器,例如用于MRPC任务。 3....你可以使用以下命令运行测试: python -m pytest -sv tests/ 大批量训练:梯度积累、多GPU、分布式训练 BERT-base和BERT-large的模型参数分别是110M和340M...,为了获得良好的性能(大多数情况下批大小是32),很难在单个GPU上对它们进行微调。...,我们使用了以下组合: 多GPU训练(在多GPU服务器上自动激活), 梯度累积 在CPU上执行优化步骤,将Adam的平均值存储在RAM中。

    2.3K20
    领券