首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用Matplotlib/Seaborn并排绘制两个堆叠直方图

Matplotlib和Seaborn是Python中常用的数据可视化库,可以用于绘制各种类型的图表,包括直方图。下面是使用Matplotlib和Seaborn并排绘制两个堆叠直方图的步骤:

  1. 导入所需的库和模块:
代码语言:txt
复制
import matplotlib.pyplot as plt
import seaborn as sns
  1. 创建数据集:
代码语言:txt
复制
data1 = [1, 2, 3, 4, 5]  # 第一个数据集
data2 = [2, 4, 6, 8, 10]  # 第二个数据集
  1. 绘制堆叠直方图:
代码语言:txt
复制
# 使用Matplotlib绘制第一个直方图
plt.hist(data1, bins=10, alpha=0.5, label='Data 1')

# 使用Matplotlib绘制第二个直方图,并设置颜色为红色
plt.hist(data2, bins=10, alpha=0.5, color='red', label='Data 2')

# 添加图例
plt.legend()

# 显示图表
plt.show()
  1. 绘制堆叠直方图(使用Seaborn):
代码语言:txt
复制
# 使用Seaborn绘制第一个直方图
sns.histplot(data=data1, bins=10, alpha=0.5, label='Data 1')

# 使用Seaborn绘制第二个直方图,并设置颜色为红色
sns.histplot(data=data2, bins=10, alpha=0.5, color='red', label='Data 2')

# 添加图例
plt.legend()

# 显示图表
plt.show()

这样就可以使用Matplotlib和Seaborn并排绘制两个堆叠直方图了。其中,Matplotlib提供了基本的绘图功能,而Seaborn则提供了更高级的统计图表绘制功能,可以使图表更加美观和易读。

关于Matplotlib和Seaborn的更多信息和用法,请参考以下链接:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python中最常用的 14 种数据可视化类型的概念与代码

本文总结介绍了多种可视化图及其适合使用场景,并同时展示使用了常用的绘图包(plotly、 seabornmatplotlib绘制这些图的代码。 条形图 条形图是用矩形条显示分类数据的图形。...双峰分布 在这个直方图中,有两组呈正态分布的直方图。它是在数据集中组合两个变量的结果。...当一个变量可以控制而另一个变量依赖于它时,可以使用散点图。当两个连续变量独立时也可以使用它。...数据的并排比较在图标的列或行中完成。这是为了将每个类别相互比较。 plotly code 在 plotly 中,标记符号可以与 graph_objs Scatter 一起使用。...code 在 matplotlib 的 figure 方法中可以使用图标属性。

9.4K20
  • Python中得可视化:使用Seaborn绘制常用图表

    但是,如果我们必须推断两个数字列之间的关系,比如“评级和大小”或“评级和评论”,会怎么样呢? 当我们想要绘制数据集中任意两个数值列之间的关系时,可以使用散点图。...让我们看看数据集评级和大小中的两个数字列的散点图是什么样子的。首先,我们将使用matplotlib绘制图,然后我们将看到它在seaborn中的样子。...使用Matplotlib的散点图 使用Seaborn的散点图 在直方图和散点图的代码中,我们将使用sn .joinplot()。 sns.scatterplot()散点图的代码。...使用Seaborn的散点图 在seaborn使用散点图的主要优点是,我们将同时得到散点图和直方图。...使用Seaborn的配对图 对于非对角视图,图像是两个数值变量之间的散点图 对于对角线视图,它绘制一个柱状图,因为两个轴(x,y)是相同的。 5.热力图 热图以二维形式表示数据。

    6.6K30

    绘制频率分布直方图的三种方法,总结的很用心!

    本次案例通过生成深圳市疫情个案数据集中所有患者的年龄参数直方图。 分别使用Matplotlib、Pandas、Seaborn模块可视化Histogram。...其中,Matplotlib和Pandas样式简单,看上去吸引力不大。Seaborn可往单变量直方图上添加很多东西,更美观,pandas可成组生成直方图。...time df=pd.read_excel(r"szdata.xls") df.head(5) Matplotlib模块 ##注意原始数据集不能存在缺失值,绘制前必须对缺失数据删除或替换,否则无法绘制成功...针对这个问题,推荐使用Seaborn模块中的distplot函数 #取出男性年龄 Age_Male=df.年龄[df.性别=="男性"] #取出女性年龄 Age_Female=df.年龄[df.性别==...16)、stacked:当有多个数据时,是否需要将直方图堆叠摆放,默认水平摆放。

    36.3K42

    数据可视化干货:使用pandas和seaborn制作炫酷图表(附代码)

    在DataFrame中,柱状图将每一行中的值分组到并排的柱子中的一组。...你可以使用seaborn.set在不同的绘图外观中进行切换: In [90]: sns.set(style="whitegrid") 03 直方图和密度图 直方图是一种条形图,用于给出值频率的离散显示...▲图9-22 小费百分比密度图 distplot方法可以绘制直方图和连续密度估计,通过distplot方法seaborn使直方图和密度图的绘制更为简单。...▲图9-23 正态混合的标准化直方图与密度估计 04 散点图或点图 点图或散点图可以用于检验两个一维数据序列之间的关系。...▲图9-28 根据星期几数值绘制的小费百分比箱型图 你可以使用更通用的seaborn.FacetGrid类创建自己的分面网格图。 具体请查看更多的seaborn文档。

    5.4K40

    数据科学 IPython 笔记本 8.11 多个子图

    有时,并排比较不同的数据视图会很有帮助。为此,Matplotlib 具有子图的概念:可以在单个图形中一起存在的较小轴域分组。这些子图可能是插图,绘图网格或其他更复杂的布局。...%matplotlib inline import matplotlib.pyplot as plt plt.style.use('seaborn-white') import numpy as np...让我们用它来创建两个垂直堆叠的轴: fig = plt.figure() ax1 = fig.add_axes([0.1, 0.5, 0.8, 0.4], xticklabels...我最经常在创建多轴域直方图使用它,如下图所示: # 创建一些正态分布的数据 mean = [0, 0] cov = [[1, 1], [1, 2]] x, y = np.random.multivariate_normal...,这是很常见的,它在 Seaborn 包中有自己的绘图 API; 详细信息请参阅“使用 Seaborn 进行可视化”。

    1K30

    分布(一)利用python绘制直方图

    自定义直方图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。...通过seaborn绘制多样化的直方图 seaborn主要利用displot和histplot绘制直方图,可以通过seaborn.displot[1]和seaborn.histplot[2]了解更多用法...+散点图 :散点图可以观测两个变量的关系,直方图能够更好的展示数据分布 import seaborn as sns import matplotlib.pyplot as plt df = sns.load_dataset...绘制多样化的直方图 matplotlib主要利用hist绘制直方图,可以通过matplotlib.pyplot.hist[6]了解更多用法 import matplotlib as mpl import...的displot和matplotlib的hist可以快速绘制直方图,并通过修改参数或者辅以其他绘图知识自定义各种各样的直方图来适应相关使用场景。

    36610

    matplotlib入门

    matplotlib入门案 Matplotlib历史 MATLAB简介: matplotlib简介 seaborn简介 画图示例: Matplotlib特定 Matplotlib安装 绘图元素 核心概念...、3D线框图等 seaborn简介 Seaborn是一种开源的数据可视化工具,它在Matplotlib的基础上进行了更高级的API封装,因此可以进行更复杂的图形设计和输出。...;'barstacked’是堆叠的条形直方图;'step’是未填充的条形直方图,只有外边框;‘stepfilled’是有填充的直方图;当histtype取值为’step’或’stepfilled’,rwidth...如果取值为True,则输出的图为多个数据集堆叠累计的结果;如果取值为False且histtype=‘bar’或’step’,则多个数据集的柱子并排排列; normed: 是否将得到的直方图向量归一化,...即显示占比,默认为0,不归一化;不推荐使用,建议改用density参数; edgecolor: 直方图边框颜色; alpha: 透明度; 返回值(用参数接收返回值,便于设置数据标签): n:直方图向量

    4.2K20

    数据分析入门系列教程-常用图表

    Seaborn 绘制: ? 两种作图整体分布式类似的,不过 Seaborn 作为 Matplotlib 的更高级 API 实现,可以更加方便的处理数据的分组展示等功能。...直方图 matplotlib 实现直方图 matplotlib.pyplot.hist(x, bins=None) x:要输入的一维数组 bins:是直方图中区域的数量 seaborn 实现直方图 seaborn.distplot...Seaborn 绘制: ? Pyecharts(echarts) 并没有专门的直方图方法。...Seaborn 绘制: ? 可以看到,Seaborn 可以进行方便的分组绘制。...总结 今天我们一起学习了常用的可视化图表以及如何制作相关图表。对于 MatplotlibSeaborn 和 Pyecharts 工具包的使用一定要熟练的掌握,在数据分析的过程中会经常使用

    1.9K20

    5种方法教你用Python玩转histogram直方图

    本篇博主将要总结一下使用Python绘制直方图的所有方法,大致可分为三大类(详细划分是五类,参照文末总结): 纯Python实现直方图,不使用任何第三方库 使用Numpy来创建直方图总结数据 使用matplotlib...,pandas,seaborn绘制直方图 下面,我们来逐一介绍每种方法的来龙去脉。...使用Matplotlib和Pandas可视化Histogram 从上面的学习,我们看到了如何使用Python的基础工具搭建一个直方图,下面我们来看看如何使用更为强大的Python库包来完成直方图。...现在,我们可以在同一个Matplotlib轴上绘制每个直方图以及对应的kde,使用pandas的plot.kde()的好处就是:它会自动的将所有列的直方图和kde都显示出来,用起来非常方便,具体代码如下...对于直方图而言,Seaborn有 distplot() 方法,可以将单变量分布的直方图和kde同时绘制出来,而且使用及其方便,下面是实现代码(以上面生成的d为例): import seaborn as

    4.2K10

    Seaborn-让绘图变得有趣

    这是seaborn出现的地方。 Seaborn是基于matplotlib的Python数据可视化库。它提供了一个高级界面,用于绘制引人入胜且内容丰富的统计图形。 该库是可视化的下一步。...数据集 Seaborn 从导入开始matplotlib。请注意,使用的是matplotlib版本3.0.3,而不是最新版本,因为存在一个会破坏热图并使其无效的错误。然后,导入了seaborn。...散点图 当想要显示两个要素或一个要素与标签之间的关系时,散点图很有用。这非常有用,因为还可以描述每个数据点的大小,为它们涂上不同的颜色并使用不同的标记。看看seaborn的基本命令是做什么的。...可以将其理解为该特定数据集的直方图,其中黑线是x轴,完全平滑并旋转了90度。 热图 相关矩阵可帮助了解所有功能和标签如何相互关联以及相关程度。...联合图 联合图是要绘制两个要素的散布图与密度图(直方图)的组合。seaborn的联合图甚至可以使用kindas 甚至单独绘制线性回归reg。

    3.6K20

    Python Seaborn综合指南,成为数据可视化专家

    我们将一起使用它们。 使用Seaborn进行数据可视化 让我们开始吧!我已将此实现部分分为两类: 可视化统计关系 绘制分类数据 我们将研究每个类别的多个示例,以及如何使用seaborn对其进行绘制。...使用Seaborn绘制散点图 散点图可能是可视化两个变量之间关系的最常见的例子。每个点在数据集中显示一个观察值,这些观察值用点状结构表示。图中显示了两个变量的联合分布。...用分类数据绘图 抖动图 Hue图 箱线图 小提琴图 Pointplot 在上面的小节中,我们了解了如何使用不同的视图表示来显示多个变量之间的关系。我们绘制两个数值变量之间的关系图。...使用Seaborn直方图 另一种用于单变量分布的图是直方图直方图以箱子的形式表示数据的分布,并使用条形图来显示每个箱子下的观察次数。...使用Seaborn绘制Ridge图 下一个图表相当引人入胜。叫做Ridge图。它也被称为joy图。Ridge图有助于可视化几个组的数值分布。这些分布可以用KDE图或直方图来表示。

    2.7K20

    5种方法教你用Python玩转histogram直方图

    本篇博主将要总结一下使用Python绘制直方图的所有方法,大致可分为三大类(详细划分是五类,参照文末总结): 纯Python实现直方图,不使用任何第三方库 使用Numpy来创建直方图总结数据 使用matplotlib...,pandas,seaborn绘制直方图 下面,我们来逐一介绍每种方法的来龙去脉。...使用Matplotlib和Pandas可视化Histogram 从上面的学习,我们看到了如何使用Python的基础工具搭建一个直方图,下面我们来看看如何使用更为强大的Python库包来完成直方图。...现在,我们可以在同一个Matplotlib轴上绘制每个直方图以及对应的kde,使用pandas的plot.kde()的好处就是:它会自动的将所有列的直方图和kde都显示出来,用起来非常方便,具体代码如下...对于直方图而言,Seaborn有 distplot() 方法,可以将单变量分布的直方图和kde同时绘制出来,而且使用及其方便,下面是实现代码(以上面生成的d为例): import seaborn as

    2K10

    五分钟入门数据可视化

    Matplotlib 中,我们使用 plt.hist(x, bins=10) 函数,其中参数 x 是一维数组,bins 代表直方图中的箱子数量,默认是 10。...a = np.random.randn(100) s = pd.Series(a) # 用 Matplotlib直方图 plt.hist(s) plt.show() # 用 Seaborn直方图...在 Matplotlib 中,我们使用 plt.boxplot(x, labels=None) 函数,其中参数 x 代表要绘制箱线图的数据,labels 是缺省值,可以为箱线图添加标签。...在 Matplotlib 中,我们使用 plt.pie(x, labels=None) 函数,其中参数 x 代表要绘制饼图的数据,labels 是缺省值,可以为饼图添加标签。...Matplotlib 总结 在 Python 生态系统中绘制数据是一件好事也是一件坏事。绘制数据的工具有很多可供选择既是一件好事也是一件坏事,尽力搞清楚哪一个工具适合你取决于你要实现什么。

    2.7K30
    领券