从mnist数据的原始大小创建样本子集,同时保留所有10个类,可以通过以下步骤实现:
以上代码将从mnist数据集中创建一个包含1000个样本的子集,每个类别均匀地选择100个样本,以保留所有10个类别。你可以根据需要调整子集大小。这个子集可以用于训练和测试机器学习模型。
正文共:8270 字 151 图 预计阅读时间:21 分钟 前文推送 MIT线性代数相关资源汇总 《机器学习》--第一章 《机器学习》--第二章 《机器学习》--第三章(上) 《机器学习》--第三章(下) 本文目录: 4.1 决策树基本流程 4.2 划分选择 4.3 剪枝处理 4.4 连续值与缺失值处理 4.5 决策树算法对比 第四章 决策树 4.1 决策树基本流程 决策树(decision tree,亦称为判定树)是一类常见的机器学习方法。 以二分类任务为例,我们希望从给定训练数据集学得一个模型用以对新
本文介绍了一种基于Isolation Forest算法的异常检测方法,该方法能够有效地处理高维、海量数据,并在多个数据集上进行了实验验证。结果表明,该方法在异常检测任务上具有较好的性能表现。
假设您正在尝试构建一个模型来预测受访者,并且在您的数据集中,约有3%的人口会作出回应(目标= 1)。在不应用任何特定分析技术的情况下,您的预测结果很可能是每个记录都被预测为非响应者(预测目标= 0),从而使预测结果信息量不足。这是由于这种信息的性质,我们称之为高度不平衡的数据。 数据的不平衡本质可能是内在的,这意味着不平衡是数据空间性质[1]的直接结果,或者是外在的,这意味着不平衡是由数据的固有特性以外的因素引起的,例如数据收集,数据传输等 作为数据科学家,我们主要关注内在数据不平衡; 更具体地说,数据集
在过去几年,由于CIFAR-10和ImageNet这样的大数据集的涌现,卷积神经网络在一系列计算机视觉任务中取得了巨大的成功。然而现实世界中的很多问题缺乏大量的带有标签的数据集,卷积神经网络容易在小样本数据上过拟合。另一方面,经典的随机森林模型在小样本数据上表现非常好,不容易过拟合。这两者的结合诞生了将训练好的随机森林模型映射为神经网络的思路。
性能优劣不一的个体学习器放在一块儿可能产生的是更加中庸的效果,即比最差的要好,也比最好的要差。那么集成学习如何实现“1 + 1 > 2”呢?这其实是对个体学习器提出了一些要求。
AI 科技评论按:数据集对于深度学习模型的重要性不言而喻,然而根据性质、类型、领域的不同,数据集往往散落在不同的资源平台里,急需人们做出整理。 fast.ai 近期将这些重要的数据集汇总到了一篇文章里,雷锋网 AI 科技评论把文章编译如下。
少了数据,我们的机器学习和深度学习模型什么也干不了。这么说吧,那些创建了数据集、让我们可以训练模型的人,都是我们的英雄,虽然这些人常常并没有得到足够的感谢。让人庆幸的是,那批最有价值的数据集后来成了「学术基准线」——被研究人员广泛引用,尤其在算法变化的对比上;不少名字则成为圈内外都耳熟能详的名称,如 MNIST、CIFAR 10 以及 Imagenet 等。
这里实现了关于论文里基于密度聚类算法(density-based clustering algorithm) 创建学习课程,以采用数据分布密度来评估训练样本的复杂度 - curriculum_clustering.
•分类(Classification)就是按照某种标准给对象贴标签,再根据标签来区分归类,类别数不变。
ID3是Quinlan于1979年提出的,是机器学习中一种广为人知的一个算法,它的提出开创了决策树算法的先河,而且是国际上最早最有影响的决策树方法
选自arXiv 作者:Ben Sorscher等 机器之心编译 编辑:蛋酱 Scale is all you need?No. 在视觉、语言和语音在内的机器学习诸多领域中,神经标度律表明,测试误差通常随着训练数据、模型大小或计算数量而下降。这种成比例提升已经推动深度学习实现了实质性的性能增长。然而,这些仅通过缩放实现的提升在计算和能源方面带来了相当高的成本。 这种成比例的缩放是不可持续的。例如,想要误差从 3% 下降到 2% 需要的数据、计算或能量会指数级增长。此前的一些研究表明,在大型 Transform
决策树是一个非常常见并且优秀的机器学习算法,它易于理解、可解释性强,其可作为分类算法,也可用于回归模型。本文将分三篇介绍决策树,第一篇介绍基本树(包括 ID3、C4.5、CART),第二篇介绍 Random Forest、Adaboost、GBDT,第三篇介绍 Xgboost 和 LightGBM。
对于许多任务来说,收集注释良好的图像数据集来训练现代机器学习算法的成本高得令人望而却步。一个吸引人的替代方案是渲染合成数据,其中地面实况注释是自动生成的。不幸的是,纯基于渲染图像训练的模型往往无法推广到真实图像。为了解决这一缺点,先前的工作引入了无监督的领域自适应算法,该算法试图在两个领域之间映射表示或学习提取领域不变的特征。在这项工作中,我们提出了一种新的方法,以无监督的方式学习像素空间中从一个域到另一个域的转换。我们基于生成对抗性网络(GAN)的模型使源域图像看起来像是从目标域绘制的。我们的方法不仅产生了合理的样本,而且在许多无监督的领域自适应场景中以很大的优势优于最先进的方法。最后,我们证明了适应过程可以推广到训练过程中看不到的目标类。
现有的机器学习任务默认训练数据遵循独立同分布 (idependently and identically distributed, IID),神经网络、深度学习等常见算法一般都将数据遵循 IID 的假设作为其推导的一部分。
一、介绍 本篇文章,我们将讨论所谓的“维度灾难”,并解释在设计一个分类器时它为何如此重要。在下面几节中我将对这个概念进行直观的解释,并通过一个由于维度灾难导致的过拟合的例子来讲解。 考虑这样一个例子,
一、介绍 本篇文章,我们将讨论所谓的“维度灾难”,并解释在设计一个分类器时它为何如此重要。在下面几节中我将对这个概念进行直观的解释,并通过一个由于维度灾难导致的过拟合的例子来讲解。 考虑这样一个例子,我们有一些图片,每张图片描绘的是小猫或者小狗。我们试图构建一个分类器来自动识别图片中是猫还是狗。要做到这一点,我们首先需要考虑猫、狗的量化特征,这样分类器算法才能利用这些特征对图片进行分类。例如我们可以通过毛皮颜色特征对猫狗进行识别,即通过图片的红色程度、绿色程度、蓝色程度不同,设计一个简单的线性分类器:
定义是这样的,把一个数据对象,划分成子集的过程,使得子集内相似度大,子集外相似度小。这样的一个过程叫做聚类。
信息熵是将熵的理论应用于信息混乱度的描述,在随机变量中可以描述随机变量不确定性的程度,在机器学习的样本集合中,可以用于描述样本集合的纯度。
决策树自上而下,对样本数据进行树形分类的过程。决策树由结点和有向边组成。结点又分内部结点和叶结点。每个内部结点表示一个特征或属性,叶子结点表示类别。 从顶部开始,所有样本聚在一起,经过根结点的划分,样本分入不同的子结点,再根据子结点的特征进一步划分,直到所有的样本被归入到一个类别。 决策树是最基础且常见的监督学习模型,可以用于处理分类问题和回归问题。 决策树的生成包括:特征选择,树的构造,树的剪枝三个过程。
原文:https://www.analyticsvidhya.com/blog/2018/03/comprehensive-collection-deep-learning-datasets/?spm
通用流程主要分为四部分:问题建模、特征工程、模型选择、模型融合。
作者:许敏 系列推荐 机器学习概念总结笔记(一) 机器学习概念总结笔记(二) 机器学习概念总结笔记(四) 12)分类决策树C4.5 C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进
特征选择特征选择概述Filter 过滤法方差选择法相关系数法卡方检验互信息法Wrapper 包装法稳定性选择(Stability Selection)递归特征消除特征值排序选择Embedded 嵌入法线性模型正则化树模型类别标签不平衡处理欠采样过采样加权处理
在现实生活中,常常采用集体智慧来解决问题。那么在机器学习中,能否将多种机器学习算法组合在一起,使计算出来的结果更好呢?这就是集成算法的思想。集成算法是提高算法准确度的有效方法之一,本文将会介绍以下几种算法:
决策树是一种自上而下,对样本数据进行树形分类的过程,由节点和有向边组成。节点分为内部节点和叶子节点,其中每个内部节点表示一个特征或属性,叶子节点表示类别。决策树常用于分类问题于回归问题,完全生长的决策树模型具有简单直观、解释性强的特点。
来源:otoro 编译:weakish 在之前的文章中,hardmaru讨论了一种生成算法,可以在诸如MNIST或CIFAR-10这样的低分辨率图像上训练,以任意高的分辨率生成数字图像。这篇文章探索了之前模型的一些变化,以生成更有趣的结果。 具体来说,我们删除了在变分自编码器中使用的像素到像素的重构损失函数。我们用一个分类网络取代了用于检测虚假图像的判别网络。之前使用的生成网络是一个相对较大的网络,包含由128个全连接节点组成的4层网络,我们尝试用一个更深的网络来取代之前的生成网络,新网络有96层,但每层只
机器学习的目的大家都了解,它能够帮助我们的工作提升效率。但是机器遗忘是何目的?难道是「弃学」?
尽管MNIST是源于NIST数据库的基准数据集,但是导出MNIST的精确处理过程已经随着时间的推移被人们多遗忘。因此,作者提出了一种足以替代MNIST数据集的重建数据集,并且它不会带来准确度的降低。作者将每个MNIST数字与它在NIST中的源相对应,并得到了更加丰富的元数据,如作者标识符、分区标识符等。作者还重建了一个完整的MNIST测试集,其中包含60000个测试样本,而不是通常使用的10000个样本。由于多余的50000个样本没有被使用,因此可以用来探究25年来已有的MNIST实验模型在该数据集上的测试效果。
主要包括:K-means、DBSCAN、Density Peaks聚类(局部密度聚类)、层次聚类、谱聚类。
数据规约: 对于中型或小型的数据集而言,通过前面学习的预处理方式已经足以应对,但这些方式并不适合大型数据集。由于大型数据集一般存在数量庞大、属性多且冗余、结构复杂等特点,直接被应用可能会耗费大量的分析或挖掘时间,此时便需要用到数据规约。 数据规约类似数据集的压缩,它的作用主要是从原有数据集中获得一个精简的数据集,这样可以在降低数据规模的基础上,保留了原有数据集的完整特性。在使用精简的数据集进行分析或挖掘时,不仅可以提高工作效率,还可以保证分析或挖掘的结果与使用原有数据集获得的结果基本相同。 要完成数据规约这一过程,可采用多种手段,包括维度规约、数量规约和数据压缩。
ID3 没有剪枝策略,容易过拟合 信息增益准则对可取值数目较多的特征有所偏好,类似“编号”的特征其信息增益接近于 1 只能用于处理离散分布的特征没有考虑缺失值
一般的,一棵决策树包含一个根结点、若干内部结点和若干个叶结点,叶子结点对应于决策结果,而其他每个结点对应于一个属性测试,每个结点被包含的样本集合根据属性测试的结果被划分到子结点中,根结点包含样本全集。
前一篇介绍英文论文审稿意见及应对策略的学习笔记,参考各位老师的学习和回答。这篇文章将翻译及分享S&P2019的一篇文章《Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks》,介绍神经网络中的后门攻击识别与缓解。
本文介绍了一种基于深度学习的图像识别方法,该方法采用卷积神经网络(CNN)和最大池化层来提取图像特征,并通过交叉熵损失函数进行优化。实验结果表明,该方法在MNIST数据集上达到了92%的准确率,效果良好。
在机器学习入门的领域里,我们会用MNIST数据集来实验各种模型。MNIST里包含各种手写数字图片。也包含每张图片对应的标签,告诉我们这个数字几。(MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST)。 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员。 测试集(test set) 也是同样比例的手写数字数据。
模式分类(pattern classification)和机器学习(machine learning)是非常热的话题,几乎在所有的现代应用程序中都得到了应用:例如邮局中的光学字符识别(OCR),电子邮件过滤,超市条形码扫描,等等。 在这篇文章中,我会简要描述一个典型的监督学习任务的主要概念,这些概念将作为将来的文章和实现各种学习算法的基础。 机器学习和模式分类 预测建模是建立一个能够进行预测的模型的通用概念。通常情况下,这样的模型包括一个机器学习算法,以便从训练数据集中学习某些属性做出这些预测。 预测建模可
认识wild faces是非常困难的,因为他们出现了各种各样的变化。传统的方法要么训练来自目标域的特定注释的变异数据,要么引入未标记的目标变异数据来适应训练数据。
上一节我们详细的介绍了组合分类方法中的boosting提升算法中经典的adaboost提升算法,当然还有其他的提升算法例如:前向分步算法(adaboost算法是该算法的一个特殊情况,)、提升树算法(基于加法模型和前向分布算法),其中提升树的学习算法即损失函数有:平方误差损失函数、指数损失函数、梯度损失函数等在这里就不细讲他们了,因为他们的算法思想都是基于boost提升的,只是学习算法不同罢了,有兴趣的同学可以参考李航的《统计学习方法》,这本书有提到上面的算法。
为了对模型的效果进行评估,我们就需要各种各样的指标,不同的问题需要不同的指标来评估,而且大部分的指标都是有局限性的,那么,我们就来盘点一下吧。
决策树,顾名思义,是一种树,一种依托于策略抉择而建立起来的树。机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。
深层神经网络参数调优(三)——mini-batch梯度下降与指数加权平均 (原创内容,转载请注明来源,谢谢) 一、mini-batch梯度下降 1、概述 之前提到的梯度下降,每优化一次的w和b,都要用到全部的样本集,把其称为批量梯度下降(batch),这里提出一个与其相对应的概念,叫做mini梯度下降。 mini-batch的目的,也是为了获取最优化代价函数的情况下的w和b,其主要改进的问题在于:当样本集数量太大,如果每次遍历整个样本集才完成一次的更新w和b,那运行时间太长。 2、主要做
越来越多的数据流,让视觉相似度检索在应用场景中越来越难,例如微信每天都会产生十几亿甚至上百亿的流数据网络图片,给相似图片搜索带来了挑战。而视觉哈希编码技术逐渐成为实现相似性检索的有效途径。
如何通过方法有效的分析海量数据,并从其中找到有利的资讯已经成为一种趋势。而决策树算法是目前在进行数据分析时很常用的方法。本文将使用IBM SPSS Modeler进行实践,介绍决策树在空气污染预测领域的实践案例。
我也忘了在哪里看过几篇类似的文章,为了让更多朋友知道这个好工具,我今天也作为一名合格的搬运工,希望大家努力传播正能量,和大家共同进步!谢谢! NVIDIA为了卖出更多的显卡,对深度学习的偏爱真是亮瞎了狗眼。除了CUDNN, 又出了DIGITS,真是希望小学生也能学会深度学习,然后去买他们的卡。NVIDIA DIGITS是一款web应用工具,在网页上对Caffe进行图形化操作和可视化,用于Caffe初学者来说,帮助非常大。不过有点遗憾的是,据NVIDIA官方文档称,DIGITS最佳支持系统是Ubuntu
NVIDIA为了卖出更多的显卡,对深度学习的偏爱真是亮瞎了狗眼。除了CUDNN, 又出了DIGITS,真是希望小学生也能学会深度学习,然后去买他们的卡。NVIDIA DIGITS是一款web应用工具,在网页上对Caffe进行图形化操作和可视化,用于Caffe初学者来说,帮助非常大。不过有点遗憾的是,据NVIDIA官方文档称,DIGITS最佳支持系统是Ubuntu 14.04,其它的系统效果如何,就不得而知了。
很多机器学习的问题都会涉及到有着几千甚至数百万维的特征的训练实例。这不仅让训练过程变得非常缓慢,同时还很难找到一个很好的解,我们接下来就会遇到这种情况。这种问题通常被称为维数灾难(curse of dimentionality)。
第8章 降维 来源:ApacheCN《Sklearn 与 TensorFlow 机器学习实用指南》翻译项目 译者:@loveSnowBest 校对:@飞龙 很多机器学习的问题都会涉及到有着几千甚至数百万维的特征的训练实例。这不仅让训练过程变得非常缓慢,同时还很难找到一个很好的解,我们接下来就会遇到这种情况。这种问题通常被称为维数灾难(curse of dimentionality)。 幸运的是,在现实生活中我们经常可以极大的降低特征维度,将一个十分棘手的问题转变成一个可以较为容易解决的问题。例
领取专属 10元无门槛券
手把手带您无忧上云