首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何从h2o随机林对象获取随机林阈值

H2O是一个开源的机器学习平台,提供了丰富的机器学习算法和工具。其中,随机森林(Random Forest)是一种常用的集成学习算法,可以用于分类和回归任务。

要从H2O随机森林对象获取随机森林的阈值,可以按照以下步骤进行操作:

  1. 导入必要的库和模块:import h2o from h2o.estimators.random_forest import H2ORandomForestEstimator
  2. 初始化H2O:h2o.init()
  3. 加载已经训练好的随机森林模型:model = h2o.load_model("path_to_model")
  4. 获取随机森林的阈值:thresholds = model._model_json['output']['init_f']

这里的model._model_json['output']['init_f']表示获取模型的初始阈值。

随机森林的阈值可以用于二分类问题中,将预测的概率转化为分类标签。通常情况下,当预测的概率大于阈值时,将其划分为正类,否则划分为负类。

关于H2O随机森林的更多信息,你可以参考腾讯云的H2O产品介绍页面:H2O产品介绍

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • h2oGPT——具备文档和图像问答功能且100%私密且可商用的大模型

    这里直接选用h2oGPT的论文摘要部分:建立在大型语言模型 (LLM) 之上的应用程序,如 GPT-4,由于其在自然语言处理方面的人类水平的能力,代表着人工智能的一场革命。然而,它们也带来了许多重大风险,例如存在有偏见的、私人的或有害的文本,以及未经授权包含受版权保护的材料。我们介绍了 h2oGPT,这是一套开放源代码的代码库,用于基于生成性预训练transformer (GPT) 创建和使用 LLM。该项目的目标是创建世界上最好的、真正的开源方法,以替代封闭源代码方法。作为令人难以置信和不可阻挡的开源社区的一部分,我们与令人难以置信的和不可阻挡的开源社区合作,开源了几个经过微调的 h2oGPT 模型,参数从 70 亿到 400 亿,准备在完全许可的 Apache2.0 许可证下用于商业使用。我们的版本中包括使用自然语言的 100 XMATHX PC 私人文档搜索。开源语言模型有助于推动人工智能的发展,使其更容易获得和值得信任。它们降低了进入门槛,允许个人和团体根据自己的需求定制这些模式。这种公开性增加了创新、透明度和公平性。需要一个开源战略来公平地分享人工智能的好处,而 H.O.ai 将继续使人工智能和 LLMS 民主化。

    04

    Spark与深度学习框架——H2O、deeplearning4j、SparkNet

    深度学习因其高准确率及通用性,成为机器学习中最受关注的领域。这种算法在2011—2012年期间出现,并超过了很多竞争对手。最开始,深度学习在音频及图像识别方面取得了成功。此外,像机器翻译之类的自然语言处理或者画图也能使用深度学习算法来完成。深度学习是自1980年以来就开始被使用的一种神经网络。神经网络被看作能进行普适近似(universal approximation)的一种机器。换句话说,这种网络能模仿任何其他函数。例如,深度学习算法能创建一个识别动物图片的函数:给一张动物的图片,它能分辨出图片上的动物是一只猫还是一只狗。深度学习可以看作是组合了许多神经网络的一种深度结构。

    03

    水能自发变成“消毒水”,83岁斯坦福教授:揭示冬天容易得流感的部分原因

    金磊 发自 凹非寺 量子位 | 公众号 QbitAI 冬天容易感冒咳嗽得流感。 但这背后到底是什么原因? 一项来自斯坦福的研究揭开了这个问题其中的一层神秘面纱,而且结果可以说是令人意想不到。 因为它正是我们再熟悉不过的——水(H2O)。 没错,这项研究正是揭示了水所具有的一个神奇能力: 在一定条件下,可以自发地变成过氧化氢(H2O2)。 过氧化氢,俗称双氧水,其比较常见的“用武之地”便是消毒了。 难道说,现在“洒洒水就能消毒”了吗?为什么冬天水的消毒作用会变弱了呢? 别急,我们现在就来一探究竟。 H2O是

    01

    PyVibMS更新:支持ORCA、xtb、Q-Chem输出

    题中所述三种程序是比较流行的量子化学计算程序,笔者近期对PyVibMS插件进行了改进,使它能够原生支持ORCA、xtb和Q-Chem程序计算得到的振动分析输出。如果是第一次接触PyVibMS,请参见 《使用PyVibMS可视化分子和固体中的振动模式》一文。本文涉及的例子文件都在GitHub的档案中。 下面就ORCA、xtb和Q-Chem这三种量子化学计算程序,演示如何用PyVibMS显示分子振动。 1. ORCA 4 打开一个干净的PyMOL窗口,开启PyVibMS插件窗口后,在输入文件处选定 examples/ORCA/h2o/h2o.hess,在弹出的对话框内将文件类型调成 ORCA Hess File (*.hess)。确认选定后,将PyVibMS窗口的XYZ下拉菜单调成 ORCA 4 (.hess file)。因为这个文件包含了振动分析的结果,因此我们需勾选 Has Vib. Info. 然后点击Load载入即可。 ORCA产生的 .hess文件并非ORCA计算的主输出文件,它是振动分析产生的额外输出文件。 目前支持ORCA 4及以上的版本,但需要注意的是ORCA在处理多原子直线分子时似乎有个错误。例如对于二氧化碳分子(examples/ORCA/co2),ORCA只给出了3个振动而实际为4个。 2. xtb xtb程序在进行 --hess或--ohess 计算之后,会产生一个模仿高斯振动分析输出的g98.out文件,我们可以把这个文件载入PyVibMS进行振动可视化。 在新开启的PyVibMS窗口中,在输入文件处选定 examples/xtb-640/co2/g98.out,在弹出的对话框内将文件类型调成 Output File (*.out)。确认选定后,将PyVibMS窗口的XYZ下拉菜单调成 xtb (g98.out file), 勾选 Has Vib. Info. 后点击Load 载入即可。 3. Q-Chem PyVibMS插件支持Q-Chem计算的振动分析(freq) 输出和结构优化+振动分析(opt+freq) 输出,并且解析Hessian和数值Hessian情况下的振动结果都可以被分析。在新开启的PyVibMS窗口中,在输入文件处选定 examples/Q-Chem/h2o/ h2o-opt-f.log,在弹出的对话框内将文件类型调成 Log File (*.log). 确认选定后,将PyVibMS窗口的XYZ下拉菜单调成 Q-Chem 4/5, 勾选 Has Vib. Info. 后点击Load 载入即可。 4. 其他量子化学程序 除了以上几个比较常用的量子化学程序,我们还可能会用到CFOUR、MOLCAS等其他程序。对于这些程序计算得到的振动分析结果,我们可以先使用UniMoVib程序(https://github.com/zorkzou/UniMoVib)处理,导出PyVibMS可以读取的XYZ坐标和mode文本文件,再使用PyVibMS进行振动可视化。关于UniMoVib程序的情况,可参见“分子振动频率和热化学计算程序UniMoVib”一文(http://bbs.keinsci.com/thread-5793-1-1.html)。具体流程请见后续推送:“使用UniMoVib+PyVibMS显示其他量化程序振动分析结果”。

    02
    领券