线性代数的基本原理如何支持深度强化学习?答案是解决了马尔可夫决策过程时的迭代更新。
本文将通过TensorFlow游乐场来快速介绍神经网络的主要功能。TensorFlow游乐场(http://playground.tensorflow.org)是一个通过网页浏览器就可以训练的简单神经网络并实现了可视化训练过程的工具。下图给出了TensorFlow游乐场默认设置的截图。
今天给大家介绍的是山东大学魏乐义教授课题组在Briefings in Bioinformatics上发表的文章“ATSE: a peptide toxicity predictor by exploiting structural and evolutionary information based on graph neural network and attention mechanism”。多肽药物目前已广泛应用于各种疾病的预防、诊断和治疗,具有广阔的开发前景,出于研究和安全监管的目的,通过计算方法在大量的候选肽中准确预测潜在的毒性肽显得十分重要。作者在文章中提出了一种基于图网络和注意力机制,利用结构信息和进化信息预测多肽的毒性的方法,称为ATSE,该方法包含4个模块:(i)将多肽序列转换为分子图和进化信息的序列处理模块,(ii)从图结构和进化信息提取有效特征的特征提取模块,(iii)优化特征的注意力模块,(iv)输出模块。通过实验表明,所提出的方法显著优于现有的预测方法,并且证明了结构信息和进化信息具有互补性,有效地提高了多肽毒性的预测准确性。
C++ STL(标准模板库)是一套功能强大的 C++ 模板类,提供了通用的模板类和函数,这些模板类和函数可以实现多种流行和常用的算法和数据结构,如向量、链表、队列、栈。
图神经网络或简称 GNN 是用于图数据的深度学习 (DL) 模型。这些年来它们变得很热。这种趋势在 DL 领域并不新鲜:每年我们都会看到一个新模型的脱颖而出,它要么在基准测试中显示最先进的结果,要么是一个全新的机制/框架到已经使用的模型中(但是你阅读论文时会感到很简单)。这种反思让我们质疑这种专门用于图形数据的新模型存在的原因。
在Rust源代码中,rust/library/alloc/benches/slice.rs文件的作用是对&[T]类型(切片类型)进行性能基准测试。该文件包含了对切片类型的一系列操作的基准测试,例如切片迭代、切片排序、切片的iter和into_iter方法等。
今天给大家介绍香港中文大学和新加坡国立大学一起在ICLR2020上发布的一篇论文,该论文针对实际使用中GNN在图结构数据中能够获得多少性能的问题,提出了两种可以度量从图中获取的信息的数量和质量的平滑度指标,以及一个使用上述平滑度指标的GNN框架CS-GNN。实验显示,在不同类型的图上,对于特定任务而言,CS-GNN相比于现有的模型有更好的效果。
为了对抗未经授权的人脸识别行为,反人脸识别工具应运而生。这些工具针对人脸识别系统的不同组成部分,包括数据收集、模型训练和实时识别等方面,旨在防止未经授权的人脸识别。尽管大多数工具仍处于实验原型阶段,但其中一些工具已经发布了公共软件版本,并受到了广泛媒体关注,例如Fawkes、LowKey和CV Dazzle等。这些反识别工具在技术方面存在很大差异,并且针对人脸识别系统的不同工作阶段提供解决方案。为了更好地了解这些工具的特点、突显性能权衡、并确定未来的发展方向,有必要对这些工具进行综合分析和研究。
在海量信息中,不乏非法分子利用网络骗取用户信任并从中获利,钓鱼网站就是其中之一。“钓鱼”网站的网址、网页内容、布局等与真实网站极其相似,没有安全意识的网民容易因此上当受骗,造成严重后果。
python数据分析部分 1. 如何利用SciKit包训练一个简单的线性回归模型 利用linear_model.LinearRegression()函数 # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(data_X_train, data_y_train) 2. 例举几个常用的python分析数据包及其作用
导语:作者在《协同过滤推荐算法》这篇文章中介绍了 user-based 和 item-based 协同过滤算法,这类协同过滤算法是基于邻域的算法(也称为基于内存的协同过滤算法),该算法不需要模型训练,基于非常朴素的思想就可以为用户生成推荐结果。还有一类基于隐因子(模型)的协同过滤算法也非常重要,这类算法中最重要的代表就是本节我们要讲的矩阵分解算法。矩阵分解算法是 2006 年 Netflix 推荐大赛获奖的核心算法,在整个推荐系统发展史上具有举足轻重的地位,对促进推荐系统的大规模发展及工业应用功不可没。
昨天所发布的迭代法称为正迭代法,用于求矩阵的主特征值,也就是指矩阵的所有特征值中最大的一个。其算法如下: 满足精度要求后停止迭代,xj是特征向量,λj是特征值。 Fortran代码如下: 以一个四阶矩
从图中提取特征与从正常数据中提取特征完全不同。图中的每个节点都是相互连接的,这是我们不能忽视的重要信息。幸运的是,许多适合于图的特征提取方法已经创建,这些技术可以分为节点级、图级和邻域重叠级。在本文中,我们将研究最常见的图特征提取方法及其属性。
来源:Deephub Imba本文共3500字,建议阅读5分钟本文中将研究如何基于消息传递机制构建图卷积神经网络,并创建一个模型来对具有嵌入可视化的分子进行分类。 假设现在需要设计治疗某些疾病的药物。有一个其中包含成功治疗疾病的药物和不起作用的药物数据集,现在需要设计一种新药,并且想知道它是否可以治疗这种疾病。如果可以创建一个有意义的药物表示,就可以训练一个分类器来预测它是否对疾病治疗有用。我们的药物是分子式,可以用图表表示。该图的节点是原子。也可以用特征向量 x 来描述原子(它可以由原子属性组成,如质量
社区问答平台是社会媒体的重要组成部分,其中蕴含大量与人们生活息息相关的提问及回答文本。从这些社区问答QA对中提取人们对问题的观点立场倾向性是一个有意思的问题,用自动化方法挖掘某一问题下所有回答针对该问题的立场倾向性,能为人们提供合理、整体的参考信息。
随着机器学习技术的迅猛发展,越来越多的数据类型得到了广泛的研究和应用。其中,图数据由于其能够表示复杂关系和结构的特点,逐渐成为研究的热点。然而,传统的机器学习和神经网络方法在处理图数据时往往力不从心,因为它们主要针对的是结构化数据(如表格数据)或序列数据(如文本和时间序列)。因此,如何高效地处理和分析图数据成为了一个重要的研究课题。
在机器学习中,分类器作用是在标记好类别的训练数据基础上判断一个新的观察样本所属的类别。分类器依据学习的方式可以分为非监督学习和监督学习。 非监督学习顾名思义指的是给予分类器学习的样本但没有相对应类别标签,主要是寻找未标记数据中的隐藏结构。 监督学习通过标记的训练数据推断出分类函数,分类函数可以用来将新样本映射到对应的标签。在监督学习方式中,每个训练样本包括训练样本的特征和相对应的标签。监督学习的流程包括确定训练样本的类型、收集训练样本集、确定学习函数的输入特征表示、确定学习函数的结构和对应的学习算法、完成整
声纹识别(又称说话人识别)是从说话人发出的语音信号中提取声纹信息,并对说话人进行身份验证的一种生物识别技术。简单来说,声纹识别技术可以“确认说话人是谁”。我们说话的时候,每个人的发音器官、发音通道和发音习惯上都有个体差异,声纹识别技术就是为了识别出说话人之间的这些差异。需要注意的是,声纹识别不同于常见的语音识别 [1]:
Milvus (https://milvus.io/) 向量搜索引擎开源半年以来,全球已经有数百家企业或组织用户。焦点科技是一家以 B2B 外贸交易为主营业务的科技公司,也是 Milvus 的用户。
当前主流的推荐系统中,embedding 无处不在,从一定意义上可以说,把 embedding 做好了,整个推荐系统的一个关键难题就攻克了。因此,本文总结了移动腾讯网推荐系统中的 embedding 技术实践,力图达到娱人娱己的目的。
本文翻译自OpenCV 2.4.9官方文档《opencv2refman.pdf》。 前言 Originally, support vector machines (SVM) was a techni
题目:Inductive Representation Learning on Large Graphs
作为自然语言处理爱好者,大家都应该听说过或使用过大名鼎鼎的Gensim吧,这是一款具备多种功能的神器。 Gensim是一款开源的第三方Python工具包,用于从原始的非结构化的文本中,无监督地学习到文本隐层的主题向量表达。 它支持包括TF-IDF,LSA,LDA,和word2vec在内的多种主题模型算法, 支持流式训练,并提供了诸如相似度计算,信息检索等一些常用任务的API接口
Opera 成立于 1995 年,总部位于挪威奥斯陆,是全球领先的浏览器提供商及数字内容发现和推荐平台领域的先驱。20 多年来,数百万名用户通过 Opera 网页浏览器访问网站、阅读、进行创作以及使用其他网络娱乐功能。
DeepSense是在移动设备上运行的深度学习框架,它可以完成移动传感器(如运动传感器)数据集上的回归和分类任务。分类任务的第一个例子是异构人类活动识别(HHAR),通过运动传感器检测人类可能从事的活动(步行、骑自行车、站立等)。另一个例子是生物识别运动分析,要求必须从步态识别出用户。回归任务的例子是用加速度测量来追踪汽车的位置。 与最先进的技术相比,DeepSense在汽车追踪问题上提供了一个更小的跟踪误差估计器,在HHAR和生物识别用户识别任务上比最先进技术的算法更具有优势。 处理来自单传感器的数据 首
Rosenblatt感知器详解 在学习了机器学习十大算法之后,我决定将目光投向神经网络,从而攀登深度学习的高峰。这条险路的第一个拦路虎就是Rosenblatt感知器。为什么这么说呢?不仅是因为它开拓性的贡献——感知器是第一个从算法上完整描述的神经网络,而Rosenblatt感知器是感知器作为监督学习的第一个模型。还因为学习Rosenblatt感知器能够帮助了解神经元的结构、信息流的传递以及知识的学习和存储,从而打开看待问题的全新视角——模拟人脑解决问题。当然,仅仅如此的话,它只能说是可口的羔羊,谈不上拦路
在学习了机器学习十大算法之后,我决定将目光投向神经网络,从而攀登深度学习的高峰。这条险路的第一个拦路虎就是Rosenblatt感知器。为什么这么说呢?不仅是因为它开拓性的贡献——感知器是第一个从算法上完整描述的神经网络,而Rosenblatt感知器是感知器作为监督学习的第一个模型。还因为学习Rosenblatt感知器能够帮助了解神经元的结构、信息流的传递以及知识的学习和存储,从而打开看待问题的全新视角——模拟人脑解决问题。当然,仅仅如此的话,它只能说是可口的羔羊,谈不上拦路的猛虎。自然是在理解这一问题时遇到了难处:1)Rosenblatt感知器为什么能收敛?《神经网络与机器学习》中的证明并不理想,它忽略了学习率和初始权重向量的影响;2)学习率和初始权重向量对迭代次数的影响是什么?3)它的更新过程与梯度下降法如此相似,不禁想问两者之间有何联系?4)线性可分两类问题通常在寻找一个分割超平面,Rosenblatt感知器也不例外,能否将这个超平面可视化,从而帮助理解?看!这真的是一个威风凛凛的猛虎,但它吓不倒人。下面开始我们的打虎过程。
Web上数据的增长使得在完整的数据集上使用许多机器学习算法变得更加困难。特别是对于个性化推荐问题,数据采样通常不是一种选择,需要对分布式算法设计进行创新,以便我们能够扩展到这些不断增长的数据集。
今天将和大家一起学习具有很高知名度的SNGAN。之前提出的WGAN虽然性能优越,但是留下一个难以解决的1-Lipschitz问题,SNGAN便是解决该问题的一个优秀方案。我们将先花大量精力介绍矩阵的最大特征值、奇异值,然后给出一个简单例子来说明如何施加1-Lipschitz限制,最后一部分讲述SNGAN。
本文主要阐述: 推荐系统的评估(Evaluation) 推荐系统的冷启动问题(Cold Start) 推荐系统实战(Actual Combat) 推荐系统案例(Case Study) 浏览前三章的内容请见上篇。 4. 推荐系统的评估(Evaluation) 如何判断推荐系统的优劣?这是推荐系统评测需要解决的首要问题。一个完整的推荐系统一般存在3个参与方: 用户 物品提供者 提供推荐系统的网站 好的推荐系统设计,能够让推荐系统本身收集到高质量的用户反馈,不断完善推荐的质
2022年7月13日,中山大学陈语谦团队在Chemical Science上发表文章。作者提出了一种子结构感知图神经网络,以学习尺度自适应的药物分子关键子结构,从而对药物-药物相关性进行可解释性预测(Learning size-adaptive molecular substructures for explainable drug–drug interaction prediction by substructure-aware graph neural network,SA-DDI)。
基于精细密集图像的人脸三维重建是计算机视觉和计算机图形学中一个长期存在的问题,其目标是恢复人脸的形状、姿态、表情、皮肤反射率和更精细的表面细节。最近,这个问题被描述为一个回归问题,并用卷积神经网络来解决。
图是一种数据结构,可对一组对象(节点)及其关系(边)进行建模。近年来,由于图的强大表达能力,利用机器学习来分析图的研究受到越来越多的关注,即图可以用作包括社会科学(社会网络)在内的各个领域的大量系统的表示图是一种数据结构,可对一组对象(节点)及其关系(边)进行建模。
一年一度的校园招聘就要开始了,为了帮助同学们更好的准备面试,SIGAI 在今天的公众号文章中对机器学习、深度学习的核心知识点进行了总结。希望我们的文章能够帮助你顺利的通过技术面试,如果你对这些问题有什么疑问,可以关注我们的公众号,向公众号发消息,我们将会无偿为你解答。对于不想在近期内找工作的同学,阅读这篇文章,对加深和巩固机器学习和深度学习的知识也是非常有用的。
梯度下降法沿着梯度的反方向进行搜索,利用了函数的一阶导数信息。梯度下降法的迭代公式为:
根据样本数据是否带有标签值,可以将机器学习算法分成有监督学习和无监督学习两类。有监督学习的样本数据带有标签值,它从训练样本中学习得到一个模型,然后用这个模型对新的样本进行预测推断。有监督学习的典型代表是分类问题和回归问题。
收集日志信息、日志解析和日志的特征化提,包括收集日志信息、日志解析和日志的特征化提取。
在 Rust 中,迭代器(iterators)是一种提供序列化访问元素的抽象方式。迭代器允许我们对集合中的元素进行遍历和处理,而无需显式地处理索引或使用循环。通过使用迭代器,我们可以编写简洁、可读性强且安全的代码。本篇博客将详细介绍 Rust 中的迭代器,包括迭代器的定义、基本操作、自定义迭代器和一些常见的使用场景。
推荐系统就是根据用户的历史行为、社交关系、兴趣点、所处上下文环境等信息去判断用户当前需要或感兴趣的物品/服务的一类应用。
2022年9月24日,浙江大学药学院侯廷军教授团队在Drug Discovery Today上发表文章”Machine learning methods for pKa prediction of small molecules: Advances and challenges“。论文中作者总结了用于预测pKa的基于机器学习的两类QSAR模型(基于描述符的模型和基于图的模型),并对pKa预测当前遇到的挑战和未来的方向进行了深入的讨论和分析。
今天给大家带来的文章是2020年5月份发表在《Bioinformatics》上的文章《TransformerCPI: Improving compound–protein interaction prediction by sequence-based deep learning with selfattention mechanism and label reversal experiments》,这篇文章是中国科学院上海药物研究所所长蒋华良院士团队的研究成果。
作为一种常用的图数据处理技术,图匹配在计算机视觉中拥有丰富的应用场景和研究价值。CVPR2018最佳论文提名的工作Deep Learning of Graph Matching [1]首次将端到端的深度学习技术引入图匹配,提出了全新的深度图匹配框架。本文将首先介绍图匹配问题的背景知识,随后对深度图匹配论文进行深入的解读。
版权声明:本文为博主-姜兴琪原创文章,未经博主允许不得转载。 https://blog.csdn.net/jxq0816/article/details/81635996
领取专属 10元无门槛券
手把手带您无忧上云