首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    BIB | ATSE: 基于图网络和注意力机制,利用结构信息和进化信息预测多肽的毒性

    今天给大家介绍的是山东大学魏乐义教授课题组在Briefings in Bioinformatics上发表的文章“ATSE: a peptide toxicity predictor by exploiting structural and evolutionary information based on graph neural network and attention mechanism”。多肽药物目前已广泛应用于各种疾病的预防、诊断和治疗,具有广阔的开发前景,出于研究和安全监管的目的,通过计算方法在大量的候选肽中准确预测潜在的毒性肽显得十分重要。作者在文章中提出了一种基于图网络和注意力机制,利用结构信息和进化信息预测多肽的毒性的方法,称为ATSE,该方法包含4个模块:(i)将多肽序列转换为分子图和进化信息的序列处理模块,(ii)从图结构和进化信息提取有效特征的特征提取模块,(iii)优化特征的注意力模块,(iv)输出模块。通过实验表明,所提出的方法显著优于现有的预测方法,并且证明了结构信息和进化信息具有互补性,有效地提高了多肽毒性的预测准确性。

    05

    机器学习中如何选择分类器

    在机器学习中,分类器作用是在标记好类别的训练数据基础上判断一个新的观察样本所属的类别。分类器依据学习的方式可以分为非监督学习和监督学习。 非监督学习顾名思义指的是给予分类器学习的样本但没有相对应类别标签,主要是寻找未标记数据中的隐藏结构。 监督学习通过标记的训练数据推断出分类函数,分类函数可以用来将新样本映射到对应的标签。在监督学习方式中,每个训练样本包括训练样本的特征和相对应的标签。监督学习的流程包括确定训练样本的类型、收集训练样本集、确定学习函数的输入特征表示、确定学习函数的结构和对应的学习算法、完成整

    08

    Rosenblatt感知器的结构 与基本原理

    在学习了机器学习十大算法之后,我决定将目光投向神经网络,从而攀登深度学习的高峰。这条险路的第一个拦路虎就是Rosenblatt感知器。为什么这么说呢?不仅是因为它开拓性的贡献——感知器是第一个从算法上完整描述的神经网络,而Rosenblatt感知器是感知器作为监督学习的第一个模型。还因为学习Rosenblatt感知器能够帮助了解神经元的结构、信息流的传递以及知识的学习和存储,从而打开看待问题的全新视角——模拟人脑解决问题。当然,仅仅如此的话,它只能说是可口的羔羊,谈不上拦路的猛虎。自然是在理解这一问题时遇到了难处:1)Rosenblatt感知器为什么能收敛?《神经网络与机器学习》中的证明并不理想,它忽略了学习率和初始权重向量的影响;2)学习率和初始权重向量对迭代次数的影响是什么?3)它的更新过程与梯度下降法如此相似,不禁想问两者之间有何联系?4)线性可分两类问题通常在寻找一个分割超平面,Rosenblatt感知器也不例外,能否将这个超平面可视化,从而帮助理解?看!这真的是一个威风凛凛的猛虎,但它吓不倒人。下面开始我们的打虎过程。

    02
    领券